Skip to main content

Advertisement

Log in

Pre-dimensioning of Small-Scale Anaerobic Reactors of Food Waste Through Biochemical Methane Potential Assays and Kinetic Models

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The potential for obtaining renewable energy from organic substrates such as food waste (FW) and biowaste has generated increasing interest in the anaerobic digestion process. Kinetic models are used to analyse the impact of different parameters on biological processes and thus, to optimize them to achieve and to increase the quality and quantity of biogas. This study presents an approximation of the pre-dimensioning of semi-continuous anaerobic reactors treating FW, based on: (i) biochemical methane potential (BMP) assays, in different conditions of substrate-inoculum ratio (S/I: 0.5 and 4.0 g volatile solid-VSsubstrate·g VSinoculum−1) and nutrients (with macro-nutrients (N and P) and micronutrients, only micronutrients (Ni, Co, Mo and Fe) and without nutrients), and (ii) the kinetic performance through three kinetic models (transfer function-TF, logistic function-LF and modified Gompertz-MG), using Pmax (maximum methane production) and Rmax (maximum rate of methane production) as kinetic parameters related to the hydraulic retention time. The best S/I ratios were below 1.0 gVSsubstrate·gVSinoculum−1 with nutrients. Although the three kinetic models obtained a good fit (R2 > 0.9 and RMSE < 15), the TF model overestimated methane production, due to its high sensitivity for the kinetic parameters, which can lead to oversizing in reactor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Vögeli et al. [27]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Casallas-Ojeda MR, Marmolejo-Rebellón LF, Torres-Lozada P (2020) Identification of factors and variables that influence the anaerobic digestion of municipal biowaste and food waste. Waste Biomass Valori. https://doi.org/10.1007/s12649-020-01150-x

    Article  Google Scholar 

  2. Etuwe CN, Momoh YOL, Iyagba ET (2016) Development of mathematical models and application of the modified gompertz model for designing batch biogas reactors. Waste Biomass Valori 7:543–550. https://doi.org/10.1007/s12649-016-9482-8

    Article  CAS  Google Scholar 

  3. Castano JM, Martin JF, Ciotola R (2014) Performance of a small-scale, variable temperature fixed dome digester in a temperate climate. Energies 7:5701–5716. https://doi.org/10.3390/en7095701

    Article  CAS  Google Scholar 

  4. Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, Bougrier C, Buffière P, Carballa M, De Wilde V, Ebertseder F, Fernández B, Ficara E, Fotidis I, Frigon JC, De Laclos HF, Ghasimi DSM, Hack G, Hartel M, Heerenklage J, Horvath IS, Jenicek P, Koch K, Krautwald J, Lizasoain J, Liu J, Mosberger L, Nistor M, Oechsner H, Oliveira JV, Paterson M, Pauss A, Pommier S, Porqueddu I, Raposo F, Ribeiro T, Pfund FR, Strömberg S, Torrijos M, Van Eekert M, Van Lier J, Wedwitschka H, Wierinck I (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522. https://doi.org/10.2166/wst.2016.336

    Article  CAS  PubMed  Google Scholar 

  5. Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, Steyer JP (2010) Alternative methods for determining anaerobic biodegradability: a review. Process Biochem 45:431–440. https://doi.org/10.1016/j.procbio.2009.11.018

    Article  CAS  Google Scholar 

  6. Da Silva C, Astals S, Peces M, Campos JL, Guerrero L (2018) Biochemical methane potential (BMP) tests: reducing test time by early parameter estimation. Waste Manag 71:19–24. https://doi.org/10.1016/j.wasman.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  7. Megido L, Negral L, Fernández-Nava Y, Suárez-Peña B, Ormaechea P, Díaz-Caneja P, Castrillón L, Marañón E (2021) Impact of organic loading rate and reactor design on thermophilic anaerobic digestion of mixed supermarket waste. Waste Manag 123:52–59. https://doi.org/10.1016/j.wasman.2021.01.012

    Article  CAS  PubMed  Google Scholar 

  8. Donoso-Bravo A, Pérez-Elvira SI, Fdz-Polanco F (2010) Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem Eng J 160:607–614. https://doi.org/10.1016/j.cej.2010.03.082

    Article  CAS  Google Scholar 

  9. Eberl HJ, Wade MJ (2020) Chapter 16 - Challenges and perspectives in reactor scale modeling of biofilm processes. In: Simoes M, Borges A, Chaves Simoes L (eds) Recent trends in biofilm science and technology. Academic, London, pp 359–383. https://doi.org/10.1016/B978-0-12-819497-3.00016-7

    Chapter  Google Scholar 

  10. Xu F, Li Y, Wang Z-W (2015) Mathematical modeling of solid-state anaerobic digestion. Prog Energ Combust 51:49–66. https://doi.org/10.1016/j.pecs.2015.09.001

    Article  Google Scholar 

  11. Parra-Orobio BA, Donoso-Bravo A, Torres-Lozada P (2017) Anaerobic digestion of food waste. Predicting of methane production by comparing kinetic models. Ing Compet 19:210–218

    Google Scholar 

  12. Raheman H (2002) A mathematical model for fixed dome type biogas plant. Energy 27:25–34. https://doi.org/10.1016/S0360-5442(01)00054-8

    Article  CAS  Google Scholar 

  13. Mushtaq K, Zaidi AA, Askari SJ (2016) Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan. Sustain Energy Technol 14:21–25. https://doi.org/10.1016/j.seta.2016.01.001

    Article  Google Scholar 

  14. Momoh OLY, Anyata BU, Saroj DP (2013) Development of simplified anaerobic digestion models (SADM’s) for studying anaerobic biodegradability and kinetics of complex biomass. Biochem Eng J 79:84–93. https://doi.org/10.1016/j.bej.2013.06.018

    Article  CAS  Google Scholar 

  15. Passos F, Ortega V, Donoso-Bravo A (2017) Thermochemical pretreatment and anaerobic digestion of dairy cow manure: experimental and economic evaluation. Bioresour Technol 227:239–246. https://doi.org/10.1016/j.biortech.2016.12.034

    Article  CAS  PubMed  Google Scholar 

  16. Lübken M, Koch K, Gehring T, Horn H, Wichern M (2015) Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation. Appl Energy 142:352–360. https://doi.org/10.1016/j.apenergy.2015.01.014

    Article  CAS  Google Scholar 

  17. Koch K, Hafner SD, Weinrich S, Astals S, Holliger C (2020) Power and limitations of biochemical methane potential (BMP) tests. Front Energy Res 8:63. https://doi.org/10.3389/fenrg.2020.00063

    Article  Google Scholar 

  18. Lou XF, Nair J, Ho G (2012) Influence of food waste composition and volumetric water dilution on methane generation kinetics. Int J Environ Prot 2:22–29

    Google Scholar 

  19. Raposo F, Borja R, Ibelli-Bianco C (2020) Predictive regression models for biochemical methane potential tests of biomass samples: pitfalls and challenges of laboratory measurements. Renew Sust Energy Rev 127:109890. https://doi.org/10.1016/j.rser.2020.109890

    Article  CAS  Google Scholar 

  20. Parra-Orobio BA, Angulo-Mosquera LS, Loaiza-Gualtero JS, Torres-López WA, Torres-Lozada P (2018) Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J Environ Chem Eng 6:1529–1535. https://doi.org/10.1016/j.jece.2018.01.048

    Article  CAS  Google Scholar 

  21. Cárdenas-Cleves LM, Marmolejo-Rebellón LF, Torres-Lozada P (2018) Anaerobic codigestion of sugarcane press mud with food waste: effects on hydrolysis stage, methane yield, and synergistic effects. Int J Chem Eng 2018:9351848. https://doi.org/10.1155/2018/9351848

    Article  CAS  Google Scholar 

  22. Oviedo-Ocaña ER, Torres-Lozada P, Marmolejo-Rebellon LF, Hoyos LV, Gonzales S, Barrena R, Komilis D, Sanchez A (2015) Stability and maturity of biowaste composts derived by small municipalities: correlation among physical, chemical and biological indices. Waste Manag 44:63–71. https://doi.org/10.1016/j.wasman.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  23. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC, p 282

  24. Casallas-Ojeda MR, Marmolejo-Rebellón LF, Torres-Lozada P (2020) Evaluation of simultaneous incidence of head space and temperature on biochemical methane potential in food waste. Cogent Eng 7:1729514. https://doi.org/10.1080/23311916.2020.1729514

    Article  Google Scholar 

  25. Quintero M, Castro L, Ortiz C, Guzmán C, Escalante H (2012) Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresour Technol 108:8–13. https://doi.org/10.1016/j.biortech.2011.12.052

    Article  CAS  PubMed  Google Scholar 

  26. Cárdenas-Cleves LM, Marmolejo-Rebellón LF, Torres-Lozada P (2018) Improvement of the biochemical methane potential of food waste by means of anaerobic co-digestion with swine manure. Braz J Chem Eng 35:1219–1229

    Article  Google Scholar 

  27. Vögeli Y, Riu Lohri C, Gallardo A, Diener S, Zurbrugg C (2014) Anaerobic digestion of biowaste in developing countries: practical information and case studies. Eawag – Swiss Federal Institute of Aquatic Science and Technology, Switzerland. https://doi.org/10.13140/2.1.2663.1045

  28. Muñoz-Tamayo R, Laroche B, Leclerc M, Walter E (2009) IDEAS: a parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling. IFAC Proceedings 42:1271–1276. https://doi.org/10.3182/20090706-3-FR-2004.00211

    Article  Google Scholar 

  29. Kumar A, Mandal B, Sharma A (2015) Advancement in biogas digester. In: Sharma A, Kar SK (eds) Energy sustainability through green energy. Springer India, New Delhi, pp 351–382. https://doi.org/10.1007/978-81-322-2337-5_14

    Chapter  Google Scholar 

  30. Cabeza I, Thomas M, Vásquez A, Acevedo P, Hernández M (2016) Anaerobic co-digestion of organic residues from different productive sectors in Colombia: biomethanation potential assessment. Chem Eng Trans 49:385–390. https://doi.org/10.3303/CET1649065

    Article  Google Scholar 

  31. Adghim M, Abdallah M, Saad S, Shanableh A, Sartaj M (2020) Assessment of the biochemical methane potential of mono- and co-digested dairy farm wastes. Waste Manag Res 38:88–99. https://doi.org/10.1177/0734242x19871999

    Article  CAS  PubMed  Google Scholar 

  32. Li L, He Q, Wei Y, He Q, Peng X (2014) Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste. Bioresour Technol 171:491–494. https://doi.org/10.1016/j.biortech.2014.08.089

    Article  CAS  PubMed  Google Scholar 

  33. Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41:1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012

    Article  CAS  Google Scholar 

  34. Córdoba V, Fernández M, Santalla E (2018) The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ Sci Pollut Res 25:21308–21317. https://doi.org/10.1007/s11356-017-0039-6

    Article  CAS  Google Scholar 

  35. Elbeshbishy E, Nakhla G, Hafez H (2012) Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source. Bioresour Technol 110:18–25. https://doi.org/10.1016/j.biortech.2012.01.025

    Article  CAS  PubMed  Google Scholar 

  36. Civelek-Yoruklu H, Korkmaz E, Manav-Demir N, Ozkaya B, Demir A (2018) The impact of pretreatment and inoculum to substrate ratio on methane potential of organic wastes from various origins. J Mater Cycles Waste Manag 20:800–809. https://doi.org/10.1007/s10163-017-0641-1

    Article  CAS  Google Scholar 

  37. Gu Y, Chen X, Liu Z, Zhou X, Zhang Y (2014) Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour Technol 158:149–155. https://doi.org/10.1016/j.biortech.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  38. Romero-Güiza MS, Vila J, Mata-Alvarez J, Chimenos JM, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sust Energy Rev 58:1486–1499. https://doi.org/10.1016/j.rser.2015.12.094

    Article  CAS  Google Scholar 

  39. Jo Y, Kim J, Hwang K, Lee C (2018) A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions. Waste Manag 78:509–520. https://doi.org/10.1016/j.wasman.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  40. Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135. https://doi.org/10.1016/j.biortech.2011.10.068

    Article  CAS  PubMed  Google Scholar 

  41. Parra-Orobio BA, Donoso-Bravo A, Ruiz-Sánchez JC, Valencia-Molina KJ, Torres-Lozada P (2018) Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Manag 71:342–349. https://doi.org/10.1016/j.wasman.2017.09.040

    Article  CAS  PubMed  Google Scholar 

  42. De Vrieze J, Raport L, Willems B, Verbrugge S, Volcke E, Meers E, Angenent LT, Boon N (2015) Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microb Biotechnol 8:776–786. https://doi.org/10.1111/1751-7915.12268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song H, Zhang Y, Kusch-Brandt S, Banks CJ (2020) Comparison of variable and constant loading for mesophilic food waste digestion in a long-term experiment. Energies 13:1279. https://doi.org/10.3390/en13051279

    Article  CAS  Google Scholar 

  44. Torres-Lozada P, Díaz-Granados JS, Parra-Orobio BA (2015) Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production. Water Sci Technol 72:1016–1021. https://doi.org/10.2166/wst.2015.291

    Article  CAS  PubMed  Google Scholar 

  45. Xu Y, Wang C, Hou J, Wang P, You G, Miao L, Lv B, Yang Y, Zhang F (2017) Application of zero valent iron coupling with biological process for wastewater treatment: a review. Rev Env Sci Bio/Technol 16:667–693. https://doi.org/10.1007/s11157-017-9445-y

    Article  Google Scholar 

  46. Gao SM, Zhao MX, Ruan WQ, Deng YY (2014) Kinetics modeling of anaerobic fermentative production of methane from kitchen waste solid residual. Adv Mat Res 864–867:1253–1257. https://doi.org/10.4028/www.scientific.net/AMR.864-867.1253

    Article  CAS  Google Scholar 

  47. Pagliaccia P, Gallipoli A, Gianico A, Gironi F, Montecchio D, Pastore C, di Bitonto L, Braguglia CM (2019) Variability of food waste chemical composition: impact of thermal pre-treatment on lignocellulosic matrix and anaerobic biodegradability. J Environ Manage 236:100–107. https://doi.org/10.1016/j.jenvman.2019.01.084

    Article  CAS  PubMed  Google Scholar 

  48. Lou XF, Nair J, Ho G (2012) Field performance of small scale anaerobic digesters treating food waste. Energy Sustain Dev 16:509–514. https://doi.org/10.1016/j.esd.2012.06.004

    Article  CAS  Google Scholar 

  49. Kalia A, Singh S (2004) Development of a biogas plant. Energ Source Part A 26:707–714. https://doi.org/10.1080/00908310490451403

    Article  Google Scholar 

  50. Ramaswamy J, Siddareddy Vemareddy P (2015) Production of biogas using small-scale plug flow reactor and sizing calculation for biodegradable solid waste. Renew Wind Water Solar 2:6. https://doi.org/10.1186/s40807-015-0006-0

    Article  Google Scholar 

  51. Akkoli KM, Dodamani BM, Jagadeesh A, Ravi C (2015) Design and construction of food waste biogas plant for hostel mess. Int J Sci Res Dev 3:101–104

    CAS  Google Scholar 

  52. Holliger C, Fruteau de Laclos H, Hack G (2017) Methane production of full-scale anaerobic digestion plants calculated from substrate’s biomethane potentials compares well with the one measured on-site. Front Energy Res 5:12. https://doi.org/10.3389/fenrg.2017.00012

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Universidad del Valle for the financing of the project CI 21118 and to COLCIENCIAS for the financing of Brayan A. Parra-Orobio as a national doctoral fellow, Call 617—2013 –Second Court.

Funding

This work was supported by the Universidad del Valle CI-21118.

Author information

Authors and Affiliations

Authors

Contributions

B. A. Parra-Orobio (BAPO), A. Donoso-Bravo (ADB) and P. Torres-Lozada (PTL) were responsible for the conceptualization and design of the study. BAPO and PTL worked in the acquisition and interpretation of data through field and laboratory work. BAPO drafted the article and ADB and PTL revised it critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Brayan Alexis Parra-Orobio.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Orobio, B.A., Donoso-Bravo, A. & Torres-Lozada, P. Pre-dimensioning of Small-Scale Anaerobic Reactors of Food Waste Through Biochemical Methane Potential Assays and Kinetic Models. Bioenerg. Res. 15, 573–588 (2022). https://doi.org/10.1007/s12155-021-10291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10291-3

Keywords

Navigation