Skip to main content
Log in

Analysis of early events in barley (Hordeum vulgare L.) roots in response to Fusarium culmorum infection

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium culmorum is able to cause devastating crown rot disease, particularly in barley and wheat worldwide. The aim of this study was to investigate the early physiological and molecular changes in barley roots in response to F. culmorum infection. Therefore, we have infected 3-day old barley roots with a highly pathogenic F. culmorum isolate (F16). The root length and shoot length were significantly reduced at 7 days after infection in six widely cultivated Turkish barley cultivars. Based on the disease index values, Martı (six-rowed) and Tokak 157/37 (two-rowed) were selected. Defense response was comparatively assessed with measures including H2O2 production and induction of stress-induced genes at six-time points after infection (0–96 h). Fungal infection did not affect the membrane integrity of root cells while osmolality decreased and H2O2 production increased. At the molecular level, antioxidant-related genes, HvCu/ZnSOD, HvGST6, HvAPX and HvBAS1 were constitutively and strongly expressed unlikely to HvCAT2 in which transcript accumulation was slightly detected upon infection. Differential expression of HvMT2, HvLOX1 and HvWRKY12 has been observed following the infection. Importantly, pathogenesis related (PR) genes HvPR1, HvPR3, HvPR4, HvPR5 and HvPR10 were induced at different time points of infection. The transcript accumulation of HvPR4 was the highest while HvPR10 expressed in minimal levels. Our results showed unexpected cellular responses such as disruption of osmotic adjustment in barley roots and the role of PR genes in initial response under F. culmorum attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal, P., Bhatt, V., Singh, R., Das, M., Sopory, S. K., & Chikara, J. (2013). Pathogenesis-related gene, JcPR-10a from Jatropha curcas exhibit RNase and antifungal activity. Molecular Biotechnology, 54, 412–425.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, P., Sarwat, M., & Sharma, S. (2008). Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology, 51(3), 167–173.

    Article  CAS  Google Scholar 

  • Baier, M., & Dietz, K. J. (1996). Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases. Plant Molecular Biology, 31, 553–564.

    Article  CAS  PubMed  Google Scholar 

  • Baier, M., & Dietz, K. J. (1997). The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. The Plant Journal: For Cell and Molecular Biology, 12(1), 179–190.

    Article  CAS  Google Scholar 

  • Barcia, R. A., Pena, L. B., Zawoznik, M. S., Benavides, M. P., & Gallego, S. M. (2014). Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to overcome a mild water deficit during the early growth of wheat. Plant Growth Regulation, 74, 107–117.

    Article  CAS  Google Scholar 

  • Beccari, G., Covarelli, L., & Nicholson, P. (2011). Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathology, 60, 671–684.

    Article  CAS  Google Scholar 

  • Bertini, L., Leonardi, L., Caporale, C., Tucci, M., Cascone, N., Di Berardino, I., et al. (2003). Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Science, 164, 1067–1078.

    Article  CAS  Google Scholar 

  • Bertini, L., Caporale, C., Testa, M., Proietti, S., & Caruso, C. (2009). Structural basis of the antifungal activity of wheat PR4 proteins. FEBS Letters, 583(17), 2865–2871.

    Article  CAS  PubMed  Google Scholar 

  • Bočová, B., Huttová, J., Liptáková, L., Mistrík, I., Ollé, M., & Tamás, L. (2012). Impact of short-term cadmium treatment on catalase and ascorbate peroxidase activities in barley root tips. Biologia Plantarum, 56(4), 724–728.

    Article  Google Scholar 

  • Çakır, B., Gül, A., Yolageldi, L., & Özaktan, H. (2014). Response to Fusarium oxysporum f.sp. radicis-lycopersici in tomato roots involves regulation of SA- and ET-responsive gene expressions. European Journal of Plant Pathology, 139, 379–391.

    Article  Google Scholar 

  • Capdevila, M., & Atrian, S. (2011). Metallothionein protein evolution: a miniassay. Journal of Biological Inorganic Chemistry, 16, 977–989.

    Article  CAS  PubMed  Google Scholar 

  • Çepni, E., Tunalı, B., & Gürel, F. (2013). Genetic diversity and mating types of Fusarium culmorum and Fusarium graminearum originating from different agro-ecological regions in Turkey. Journal of Basic Microbiology, 53, 686–694.

    Article  PubMed  Google Scholar 

  • Cheng, Z., Dong, K., Ge, P., Bian, Y., Dong, L., Deng, X., et al. (2015). Identification of leaf proteins differentially accumulated between wheat cultivars distinct in their levels of drought tolerance. PLoS ONE, 10(5), e0125302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, K., Kim, Y. C., Woo, J. C., Rakwal, R., Agrawal, G. K., Yoeun, S., et al. (2012). Transgenic expression of dual positional maize lipoxygenase-1 leads to the regulation of defense-related signaling molecules and activation of the antioxidative enzyme system in rice. Plant Science, 185–186, 238–245.

    Article  PubMed  Google Scholar 

  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  PubMed  Google Scholar 

  • Covarelli, L., Gardiner, D., Beccari, G., & Nicholson, P. (2013). Fusarium virulence assay on wheat and barley seedlings. Bio-protocol, 3(7): e446. http://www.bio-protocol.org/e446.

  • De Coninck, B., Timmermans, P., Vos, C., Cammue, B. P. A., & Kazan, K. (2015). What lies beneath: belowground defense strategies in plants. Trends in Plant Science, 20(2), 91–101.

    Article  PubMed  Google Scholar 

  • De Gara, L., de Pinto, M. C., & Tommasi, F. (2003). The antioxidant systems vis- à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.

    Article  Google Scholar 

  • Desmond, O. J., Edgar, C. I., Manners, J. M., Maclean, D. J., Schenk, P. M., & Kazan, K. (2006). Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiological and Molecular Plant Pathology, 67, 171–179.

    Article  Google Scholar 

  • Desmond, O. J., Manners, J. M., Schenk, P. M., Maclean, D. J., & Kazan, K. (2008). Gene expression analysis of the wheat response to infection by Fusarium pseudograminearum. Physiological and Molecular Plant Pathology, 73, 40–47.

    Article  CAS  Google Scholar 

  • Duniway, J. M. (1971). Water relations of Fusarium wilt in tomato. Physiological Plant Pathology, 1, 537–548.

    Article  Google Scholar 

  • Erginbas-Orakci, G., Dababat, A.A., Morgounov, A., & Braun, H.J. (2013). The dryland crown rot disease: status of control options. CGIAR SP-IPM Technical Innovation Brief. http://www.spipm.cgiar.org/c/document_library/get_file?p_l_id=17830&folderId=18484&name=DLFE-5843.pdf. Accessed 12 Nov 2015.

  • Faralli, M., Lektemur, C., Rosellini, D., & Gürel, F. (2015). Effects of heat shock and salinity on barley growth and stress-related gene transcription. Biologia Plantarum, 59(3), 537–546.

    Article  CAS  Google Scholar 

  • Gardiner, D. M., Stephens, A. E., Munn, A. L., & Manners, J. M. (2013). An ABC pleiotropic drug resistance transporter of Fusarium graminearum with a role in crown and root diseases of wheat. FEMS Microbiology Letters, 348, 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Gurel, F., Albayrak, G., Diken, O., Cepni, E., & Tunali, B. (2010). Use of Rep-PCR for Genetic diversity analyses in Fusarium culmorum. Journal of Phytopathology, 158, 387–389.

    Article  CAS  Google Scholar 

  • Gutleb, A. C., Morrison, E., & Murk, A. J. (2002). Cytotoxicity assays for mycotoxins produced by Fusarium strains: a review. Environmental Toxicology and Pharmacology, 11, 309–320.

    Article  CAS  PubMed  Google Scholar 

  • Hare, M. C., & Parry, D. W. (1996). Observations on the maintenance and measurement of soil water in simple pot experiments and its effects on the seed-borne Fusarium culmorum seedling blight of winter wheat. The Annals of Applied Biology, 129, 227–236.

    Article  Google Scholar 

  • Hare, M. C., Parry, D. W., & Baker, M. D. (1999). The relationship between wheat seed weight, infection by Fusarium culmorum or Microdochium nivale, germination and seedling disease. European Journal of Plant Pathology, 105, 859–866.

    Article  Google Scholar 

  • Hekimhan, H., Bagci, A., Nicol, J. M., Arisoy, Z., Taner, S., & Sahin, S. (2004). Dryland root rot: a major threat to winter cereal production under sub-optimal growing conditions. Proceeding of the 4th International Crop Science Congress. http://www.cropscience.org.au/icsc2004/poster/3/7/2/1323_hekimhan.htm. Accessed 12 Nov 2015.

  • Huang, X., & Madan, A. (1999). CAP3: a DNA sequence assembly program. Genome Research, 9(9), 868–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inglis, D. A., & Cook, R. J. (1986). Persistence of chlamydospores of Fusarium culmorum in wheat field soils of eastern Washington. Phytopathology, 76, 1205–1208.

    Article  Google Scholar 

  • Karakaş, Ö., Gürel, F., & Uncuoğlu, A. (2010). Exploiting of a wheat est database for assessment of genetic diversity. Genetics and Molecular Biology, 33, 719–730.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katilé, S. O., Perumal, R., Rooney, W. L., Prom, L. K., & Magill, C. W. (2010). Expression of pathogenesis-related protein PR-10 in sorghum floral tissues in response to inoculation with Fusarium thapsinum and Curvularia lunata. Molecular Plant Pathology, 11(1), 93–103.

    Article  PubMed  Google Scholar 

  • Kolomiets, M. V., Chen, H., Gladon, R. J., Braun, E. J., & Hannapel, D. J. (2000). A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiology, 124(3), 1121–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schürmann, P., et al. (2002). The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5738–5743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., & Ogbonnaya, F. C. (2015). Resistance to Fusarium crown rot in wheat and barley: a review. Plant Breeding, 134, 365–372.

    Article  Google Scholar 

  • Liu, Y., Zheng, Y. L., Wei, Y., Zhou, M., & Liu, C. (2012). Genotypic differences to crown rot caused by Fusarium pseudograminearum in barley (Hordeum vulgare L.). Plant Breeding, 131, 728–732.

    Article  Google Scholar 

  • Mangelsen, E., Kilian, J., Berendzen, K. W., Kolukisaoglu, U. H., Harter, K., Jansson, C., et al. (2008). Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 9(1), 194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin, S., Ramos, A. J., Cano-Sancho, G., & Sanchis, V. (2013). Mycotoxins: occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218–237.

    Article  CAS  PubMed  Google Scholar 

  • Marla, S. S., & Singh, V. K. (2012). LOX genes in blast fungus (Magnaporthe grisea) resistance in rice. Functional and Integrative Genomics, 12, 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Mellersh, D. G., Foulds, I. V., Higgins, V. J., & Heath, M. C. (2002). H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant Journal, 29, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Mergoum, M., Student, F. G., Hill, J. P., & Sciences, B. (1998). Evaluation of resistance of winter wheat to Fusarium acuminatum by inoculation of seedling roots with single, germinated macroconidia. Plant Disease, 82(3), 300–302.

    Article  Google Scholar 

  • Naganeeswaran, S. A., Subbian, E. A., & Ramaswamy, M. (2012). Analysis of expressed sequence tags (ESTs) from cocoa (Theobroma cacao L) upon infection with Phytophthora megakarya. Bioinformation, 8(2), 65–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngamhui, N. O., Akkasaeng, C., Zhu, Y. J., Tantisuwichwong, N., Roytrakul, S., & Sansayawichai, T. (2012). Differentially expressed proteins in sugarcane leaves in response to water deficit stress. Plant Omics Journal, 5(4), 365–371.

    CAS  Google Scholar 

  • Nicol, J. M., Bagci, A., Hekimhan, H., Tunali B., Bolat, N., Braun, H. J., & Trethowan, R. (2004). Strategy for the identification and breeding of resistance to dryland root rot complex for International spring and winter wheat breeding programs. Proceedings of the 4th International Crop Science Congress. http://www.cropscience.org.au/icsc2004/poster/3/7/2/1322_nicol.htm. Accessed 12 Nov 2015.

  • Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Paulitz, T. C. (2006). Low input no-till cereal production in the Pacific Northwest of the U.S.: the challenges of root diseases. European Journal of Plant Pathology, 115, 271–281.

    Article  Google Scholar 

  • Peng, M., & Kuc, J. (1992). Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 82(6), 696–699.

    Article  CAS  Google Scholar 

  • Robatzek, S., & Somssich, I. E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes and Development, 16(9), 1139–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberti, R., Veronesi, A., Cesari, A., Cascone, A., Di Berardino, I., Bertini, L., et al. (2008). Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum. Plant Science, 175, 339–347.

    Article  CAS  Google Scholar 

  • Rushton, P. J., & Somssich, I. E. (1998). Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology, 1, 311–315.

    Article  CAS  PubMed  Google Scholar 

  • Rushton, P. J., Tones, J. T., Parniske, M., Wernert, P., Hahlbrock, K., & Somssich, I. E. (1996). Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PRl genes. The EMBO Journal, 15(20), 5690–5700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques, 34(2), 374–378.

    CAS  PubMed  Google Scholar 

  • Scandalios, J. G., Guan, L., & Polidoros, A. N. (1997). Catalases in plants: Gene structure, properties, regulation, and expression. In J. G. Scandalios (Ed.), Oxidative stress and the molecular biology of antioxidant defences (pp. 343–406). New York: Cold Spring Harbor.

    Google Scholar 

  • Scherm, B., Balmas, V., Spanu, F., Pani, G., Delogu, G., Pasquali, M., et al. (2013). Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molecular Plant Pathology, 14(4), 323–341.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1–26.

  • Shetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121, 267–280.

    Article  CAS  Google Scholar 

  • Siedow, J. M. (1991). Plant lipoxygenase: structure and function. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 145–188.

    Article  CAS  Google Scholar 

  • Sitton, J. W., & Cook, R. J. (1981). Comparative morphology and survival of chlamydospores of Fusarium roseum ‘culmorum’ and ‘graminearum’. Phytopathology, 71, 85–90.

    Article  Google Scholar 

  • Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L., & Manners, J. M. (2008). Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Molecular Plant-Microbe Interactions, 21(12), 1571–1581.

    Article  CAS  PubMed  Google Scholar 

  • Sudisha, J., Sharathchandra, R. G., Amruthesh, K. N., Kumar, A., & Shetty, H. S. (2012). Pathogenesis related proteins in plant defense response. In J. M. Merillon & K. G. Ramawat (Eds.), Plant defence: Biological control, progress in biological control (pp. 379–403). Netherlands: Springer.

    Chapter  Google Scholar 

  • Tissera, P., & Ayres, P. G. (1986). Transpiration and the water relations of faba bean (Vicia faba) infected by rust (Uromyces viciae-fabae). New Phytologist, 102, 385–395.

    Article  Google Scholar 

  • Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138, 414–429.

    Article  CAS  PubMed  Google Scholar 

  • Tufan, F., Uçarlı, C., & Gürel, F. (2015). Analysis of expressed sequence tags from cDNA library of Fusarium culmorum infected barley (Hordeum vulgare L.). Bioinformation, 11(1), 34–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tunali, B., Nicol, J., Erol, F. Y., & Altiparmak, G. (2006). Pathogenicity of Turkish crown and head scab isolates on stem bases on winter wheat under greenhouse conditions. Plant Pathology Journal, 5(2), 143–149.

    Article  Google Scholar 

  • Tunali, B., Nicol, J. M., Hodson, D., Uçkun, Z., Büyük, O., Erdurmuş, D., et al. (2008). Root and crown rot fungi associated with spring, facultative, and winter wheat in Turkey. Plant Disease, 92, 1299–1306.

    Article  Google Scholar 

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Wang, N., Xiao, B., & Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168(18), 2212–2224.

    Article  CAS  PubMed  Google Scholar 

  • Warzecha, T., Zieliński, A., Skrzypek, E., Wójtowicz, T., & Moś, M. (2012). Effect of mechanical damage on vigor, physiological parameters, and susceptibility of oat (Avena sativa) to Fusarium culmorum infection. Phytoparasitica, 40, 29–36.

    Article  Google Scholar 

  • Warzecha, T., Skrzypek, E., & Sutkowska, A. (2015). Effect of Fusarium culmorum infection on selected physiological and biochemical parameters of barley (Hordeum vulgare L.) DH lines. Physiological and Molecular Plant Pathology, 89, 62–69.

    Article  CAS  Google Scholar 

  • Wegulo, S. N., Baenziger, P. S., Hernandez Nopsa, J., Bockus, W. W., & Hallen-Adams, H. (2015). Management of Fusarium head blight of wheat and barley. Crop Protection, 73, 100–107.

    Article  CAS  Google Scholar 

  • Yu, D., Chen, C., & Chen, Z. (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell, 13, 1527–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University, Project No. 27149. Authors thank to Dr. Paolo Bagnaresi, CRA- Genomics Research Centre, for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Gürel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufan, F., Uçarlı, C., Tunalı, B. et al. Analysis of early events in barley (Hordeum vulgare L.) roots in response to Fusarium culmorum infection. Eur J Plant Pathol 148, 343–355 (2017). https://doi.org/10.1007/s10658-016-1087-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1087-3

Keywords

Navigation