Skip to main content
Log in

Pathogenesis-Related Gene, JcPR-10a from Jatropha curcas Exhibit RNase and Antifungal Activity

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The pathogenesis-related proteins have a broad spectrum of roles, ranging from seed germination, development to resistance. The PR-10 is a multigene family differing from other PR proteins in being intracellular, small and acidic with similar 3D structures. We have isolated JcPR-10a cDNA with an ORF of 483 bp from J. curcas, an important biofuel crop grown in the wastelands of India. JcPR-10a gets clustered with dicots in phylogenetic tree. The genomic organisation analysis of JcPR-10a revealed the presence of an intron at conserved 185 bp position. Transcript expression of JcPR-10a was upregulated in response to different stimuli such as NaCl, salicylic acid, methyl jasmonate and M. phaseolina. In response to SA and Macrophomina the transcript was found increased at 48 h, however, in case of NaCl and MeJa a strong induction was observed at 12 h which decreased at 48 h. We first time report the transcript up regulation of PR-10 gene by Macrophomina, a pathogen causing collar rot in Jatropha. The recombinant E. coli cells showed better growth in LB medium supplemented with NaCl, whereas growth of recombinant cells was inhibited in LB medium supplemented with KCl, mannitol, sorbitol, methyl jasmonate and salicylic acid. The JcPR-10a protein was overexpressed in E. coli cells, and was purified to homogeneity, the purified protein exhibited RNase and DNase activity. Furthermore, the protein also showed antifungal activity against Macrophomina, indicating that JcPR-10a can serve as an important candidate to engineer stress tolerance in Jatropha as well as other plants susceptible to collar rot by Macrophomina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASA:

Acetyl salicylic acid

MeJa:

Methyl jasmonate

PCD:

Programmed cell death

PR:

Pathogenesis-related

SA:

Salicylic acid

References

  1. Bol, J., Linthorst, H., & Cornelissen, B. (1990). Plant pathogenesis-related proteins induced by virus infection. Annual review of Phytopathology, 28, 113–138.

    Article  CAS  Google Scholar 

  2. Vallad, G., & Goodman, R. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.

    Article  Google Scholar 

  3. Van Loon, L., Pierpoint, W., Boller, T., & Conejero, V. (1994). Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biotechnology Reports, 12, 245–264.

    Article  Google Scholar 

  4. Van Loon, L., Rep, M., & Pieterse, C. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review Phytopathology, 44, 135–162.

    Article  Google Scholar 

  5. Samanani, N., Liscombe, D., & Facchini, P. (2004). Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant Journal, 40, 302–313.

    Article  CAS  Google Scholar 

  6. Liu, J., & Ekramoddoullah, A. (2004). Characterization, expression and evolution of two novel subfamilies of Pinus monticola cDNAs encoding pathogenesis-related (PR)-10 proteins. Tree Physiology, 24, 1377–1385.

    Article  CAS  Google Scholar 

  7. Liu, J., & Ekramoddoullah, A. (2006). The family 10 of plant pathogenesis-related proteins, their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.

    Article  CAS  Google Scholar 

  8. Breiteneder, H., Pettenburger, K., Bito, A., Valenta, R., Kraft, D., Rumpold, H., et al. (1989). The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO Journal, 8, 1935–1938.

    CAS  Google Scholar 

  9. Bahramnejad, B., Goodwin, P., Zhang, J., Atnaseo, C., & Erickson, L. (2010). A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules. Plant Cell Reports, 29, 1235–1250.

    Article  CAS  Google Scholar 

  10. Park, C., Kim, K., Shin, R., Park, J., Shin, Y., & Paek, K. (2004). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant Journal, 37, 186–198.

    Article  CAS  Google Scholar 

  11. Borsics, T., & Lados, M. (2002). Dodder infection induces the expression of a pathogenesis related gene of the family PR-10 in alfalfa. Journal of Experimental Botany, 53, 1831–1832.

    Article  CAS  Google Scholar 

  12. Robert, N., Ferran, J., Breda, C., Coutos-Thévenot, P., Boulay, M., Buffard, D., et al. (2001). Molecular characterization of the incompatible interactions of Vitis vinifera leaves with Pseudomonas syringae pv. pisi: expression of genes coding for stilbene synthase and class 10 PR protein. European Journal of Plant Pathology, 107, 249–261.

    Article  CAS  Google Scholar 

  13. Tewari, S., Brown, S., Kenyon, P., Balcerzak, M., & Fristensky, B. (2003). Plant defense multigene families. II. Evolution of coding sequence and differential expression of PR 10 genes in Pisum, http://arXivorg/q-bioPE/0310038.

  14. Katile, S., Perumal, R., Rooney, W., Prom, L., & Magill, C. (2010). Expression of pathogenesis-related protein PR-10 in sorghum floral tissues in response to inoculation with Fusarium thapsinum and Curvularia lunata. Molecular Plant Pathology, 11, 93–103.

    Article  CAS  Google Scholar 

  15. McGee, J., Hamerand, J., & Hodges, T. (2001). Characterization of a PR-10 pathogenesis related gene family induced in rice during infection with Magnaporthe grisea. Molecular Plant Microbe Interaction, 14, 877–886.

    Article  CAS  Google Scholar 

  16. Hashimoto, M., Kisseleva, L., Sawa, S., Furukawa, T., Komatsu, S., & Koshiba, T. (2004). A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant and Cell Physiology, 45, 550–559.

    Article  CAS  Google Scholar 

  17. Zhou, X., Lu, S., Xu, Y., Wang, J., & Chen, X. (2002). A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Science, 162, 629–636.

    Article  CAS  Google Scholar 

  18. Chen, J., & Dai, X. (2010). Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta, 231, 861–873.

    Article  CAS  Google Scholar 

  19. Poupard, P., Parisi, L., Campion, C., Ziadi, S., & Simoneau, P. (2003). A wound- and ethephon inducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. Physiological and Molecular Plant Pathology, 62, 3–12.

    Article  CAS  Google Scholar 

  20. Xu, Y., Yu, H., He, M., Yang, Y., & Wang, Y. (2010). Isolation and expression analysis of a novel pathogenesis-related protein 10 gene from Chinese wild Vitis pseudoreticulata induced by Uncinula necator. Biologia, 65, 653–659.

    Article  CAS  Google Scholar 

  21. Bufe, A., Spangfort, M., Kahlert, H., Schlaak, M., & Becker, W. (1996). The major birch pollen allergen, Bet v 1, shows ribonuclease activity. Planta, 199, 413–415.

    Article  CAS  Google Scholar 

  22. Swoboda, I., Scheiner, O., Heberle-Bors, E., & Vicente, O. (1995). cDNA cloning and characterization of three genes in the Bet v 1 gene family that encode pathogenesis related proteins. Plant, Cell and Environment, 18, 865–874.

    Article  CAS  Google Scholar 

  23. Koistinen, K., Soininen, P., Venäläinen, T., Häyrinen, J., Laatikainen, R., Peräkylä, M., et al. (2005). Birch PR-10c interacts with several biologically important ligands. Phytochemistry, 66, 2524–2533.

    Article  CAS  Google Scholar 

  24. Fujimoto, Y., Nagata, R., Fukasawa, H., Yano, K., Azuma, M., Iida, A., et al. (1998). Purification and cloning of cytokinin specific binding protein from mung bean (Vigna radiata). European Journal of Biochemistry, 258, 794–802.

    Article  CAS  Google Scholar 

  25. Gonneau, M., Pagant, S., Brun, F., & Laloue, M. (2001). Photo affinity labeling with the cytokinin agonist azido-CPPU of a 34 kDa peptide of the intracellular pathogenesis related protein family in the moss Physcomitrella patens. Plant Molecular Biology, 46, 539–548.

    Article  CAS  Google Scholar 

  26. Bais, H., Vepachedu, R., Lawrence, C., Stermitz, F., & Vivanco, J. (2003). Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St John’s wort (Hypericum perforatum L.). Journal of Biological Chemistry, 278, 32413–32422.

    Article  CAS  Google Scholar 

  27. Warner, S., Gill, A., & Draper, J. (1994). The developmental expression of the asparagus (AoPR1) gene correlates with sites of phenylpropanoid biosynthesis. Plant Journal, 6, 31–43.

    Article  CAS  Google Scholar 

  28. Balsamo, R., Wang, J., Eckard, K., Wang, C., & Lord, E. (1995). Immunogold localization of a developmentally regulated, tapetal-specific, 15 kDa lily anther protein. Protoplasma, 189, 17–25.

    Article  CAS  Google Scholar 

  29. Francis, G., Edinger, R., & Becker, K. (2005). A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Natural Resources Forum, 29, 12–24.

    Article  Google Scholar 

  30. Fairless, D. (2007). Biofuel: The little shrub that could—maybe. Nature, 449, 652–655.

    Article  Google Scholar 

  31. Ogunwole, J., Chaudhary, D., Ghosh, A., Daudu, C., Chikara, J., & Patolia, J. (2008). Contribution of Jatropha curcas to soil quality improvement in a degraded Indian entisol. Acta Agriculturae Scandinavica, 58, 245–251.

    CAS  Google Scholar 

  32. Sanderson, K. (2009). Wonder weed plans fail to flourish. Nature, 461, 328–329.

    Article  CAS  Google Scholar 

  33. Johnson, T. S., Eswaran, N., & Sujatha, M. (2011). Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop. Plant Cell Reports, 30, 1573–1591.

    Article  Google Scholar 

  34. Mihail, J. D., & Taylor, S. J. (1995). Interpreting variability among isolates for Macrophomina phaseolina in pathogenicity, pycnidium production and chlorate utilization. Canadian Journal of Botany, 10, 1596–1603.

    Article  Google Scholar 

  35. Babu, B. K., Saxena, A. K., Srivastava, A. K., & Arora, D. K. (2007). Identification and detection of Macrophomina phaseolina by using species specific oligonucleotide primers and probe. Mycologia, 99, 797–803.

    Article  CAS  Google Scholar 

  36. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  Google Scholar 

  37. Blom, N., Gammeltoft, S., & Brunak, S. (1999). Sequence-and structure based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 294, 1351–1362.

    Article  CAS  Google Scholar 

  38. McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16, 404–405.

    Article  CAS  Google Scholar 

  39. Wen, J., Vanek-Krebitz, M., Hoffmann-Sommergruber, K., Scheiner, O., & Breiteneder, H. (1997). The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Molecular Phylogenetics and Evolution, 8, 317–333.

    Article  CAS  Google Scholar 

  40. Lebel, S., Schellenbaum, P., Walter, B., & Maillot, P. (2010). Characterisation of the Vitis vinifera PR10 multigene family. BMC Plant Biology, 10, 184.

    Article  Google Scholar 

  41. Hoffmann-Sommergruber, K., Vanek-Krebitz, M., Radauer, C., Wen, J., Ferreira, F., Scheiner, O., et al. (1997). Genomic characterization of members of the Bet v 1 family: Genes coding for allergens and pathogenesis-related proteins share intron positions. Gene, 197, 91–100.

    Article  CAS  Google Scholar 

  42. Kunkel, B., & Brooks, D. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5, 325–331.

    Article  CAS  Google Scholar 

  43. Rushton, P. J., Torres, J. T., Parniske, M., Wernert, P., Hahlbrock, K., & Somssich, I. E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO Journal, 15, 5690–5700.

    CAS  Google Scholar 

  44. Tao, Z., Liu, H., Qiu, D., Zhou, Y., Li, X., Xu, C., et al. (2009). A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiology, 151, 936–948.

    Article  CAS  Google Scholar 

  45. Hwang, S., Lee, I., Yie, S., & Hwang, D. (2008). Identification of an OsPR10a promoter region responsive to salicylic acid. Planta, 227, 1141–1150.

    Article  CAS  Google Scholar 

  46. Chang, M. M., Chiang, C. C., Martin, W. M., & Hadwiger, L. A. (1993). Expression of a pea disease resistance response gene in the potato cultivar Shepody. American Journal of Potato Research, 70, 635–647.

    Article  Google Scholar 

  47. Srivastava, S., Fristensky, B., & Kav, N. N. (2004). Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant and Cell Physiology, 45, 1320–1324.

    Article  CAS  Google Scholar 

  48. Wang, C., Huang, J., & Hu, J. (1999). Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Molecular Biology, 40, 807–814.

    Article  CAS  Google Scholar 

  49. Handzhiyski, Y., Mironova, R., & Ivanov, I. (2009). Effect of acetyl salicylic acid on glycation and mutability of Escherichia coli chromosomal DNA. Biotechnology & Biotechnology Equipments, 23, 1079–1083.

    CAS  Google Scholar 

  50. Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100, 681–697.

    Article  CAS  Google Scholar 

  51. Swoboda, I., Hoffmann-Sommergruber, K., O’Ríordáin, G., Scheiner, O., Heberle-Bors, E., & Vicente, O. (1996). Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 96, 433–438.

    Article  CAS  Google Scholar 

  52. Bantignies, B., Se′guin, J., Muzac, I., De′dalde′champ, F., Gulick, P., & Ibrahim, R. (2000). Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Molecular Biology, 42, 871–881.

    Article  CAS  Google Scholar 

  53. Gómez-Gómez, L., Rubio-Moraga, A., & Ahrazem, O. (2011). Molecular cloning and characterisation of a pathogenesis-related protein CsPR10 from Crocus sativus. Plant Biology (Stuttg), 13, 297–300.

    Article  Google Scholar 

  54. He, M., Xu, Y., Cao, J., Zhu, Z., Jiao, Y., Wang, Y., Guan, X., Yang, Y., Xu, W., & Fu, Z. (2012). Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma. doi:10.1007/s00709-012-0384-8.

  55. Pungartnik, C., da Silva, A., de Melo, S., Gramacho, K., de Matos Cascardo, J., Brendel, M., et al. (2009). High-affinity copper transport and Snq2 export permease of Saccharomyces cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao. Molecular Plant Microbe Interaction, 22, 39–51.

    Article  CAS  Google Scholar 

  56. Liu, X., Huang, B., Lin, J., Fei, J., Chen, Z., Pang, Y., et al. (2006). A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress- and pathogen-inducible. Journal of Plant Physiology, 163, 546–556.

    Article  CAS  Google Scholar 

  57. Xie, Y., Chen, Z., Brown, R., & Bhatnagar, D. (2010). Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. Journal of Plant Physiology, 167, 121–130.

    Article  CAS  Google Scholar 

  58. Flores, T., Alape-Girón, A., Flores-Díaz, M., & Flores, H. (2002). Ocatin. A novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities. Plant Physiology, 128, 1291–1302.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance from Department of Science and Technology (DST) and Council of Scientific and Industrial Research (CSIR), New Delhi, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parinita Agarwal or Jitendra Chikara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, P., Bhatt, V., Singh, R. et al. Pathogenesis-Related Gene, JcPR-10a from Jatropha curcas Exhibit RNase and Antifungal Activity. Mol Biotechnol 54, 412–425 (2013). https://doi.org/10.1007/s12033-012-9579-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9579-7

Keywords

Navigation