Skip to main content
Log in

Effects of heat shock and salinity on barley growth and stress-related gene transcription

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effects of a short (30 min) heat shock (HS) on plants subsequently grown under a salinity stress (SS, 200 mM NaCl) for 10 d were investigated in barley (Hordeum vulgare L.) cv. Tokak 157/37. The maximum temperature for HS allowing plant survival was 45 °C. The root length was significantly decreased by SS, whereas HS alone did not affect root growth. Interestingly, HS stimulated root elongation under SS. An osmotic adjustment was promoted in leaves by SS. On the contrary, HS increased the osmotic potential in leaves in the absence of SS, and partly counteracted the effect of SS in the HS+SS treatment. Cu/Zn-SOD, HvAPX, HvCAT2, HSP17, HSP18, and HSP90 were transcribed in leaves of HS-treated plants, but not in control plants. The HSP70 was constitutively transcribed in both the SS and control plants, but after HS, a shorter amplicon was also observed. The genes coding antioxidants, Cu/Zn-SOD, HvCAT2 and HvAPX, were differentially influenced by SS or HS+SS in the roots and leaves. In the roots, the mRNA content of BAS1, HvDRF1, HvMT2, and HvNHX1 increased after the HS treatment. In a recovery experiment in which plants were grown to maturity after HS and HS+SS stress exposure, the plant height increased and the time to maturity was reduced in comparison with SS. Our results show that HS could stimulate plant growth and reduce some of the negative effects of SS, and that it affected the transcription of several stress-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

APX:

ascorbate peroxidase

α-TUB:

α-tubuline

BAS1:

2-cis-peroxiredoxin 1

CAT:

catalase

Cu/Zn-SOD:

copper-zinc superoxide dismutase

DRF1:

dehydration responsive factor-1

GST:

glutathione-S-transferase

HS:

heat shock

MT2:

methallothionein-like protein type 2

NHX1:

Na+/H+ antiporter 1

SS:

salt stress

References

  • Acar, O., Türkan, I., Özdemir, F.: Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. — Acta Physiol. Plant. 23: 351–356, 2001.

    Article  CAS  Google Scholar 

  • Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P.: Protective role of antioxidant enzymes under high temperature stress. — Plant Sci. 171: 382–388, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Alscher, R.G., Erturk, N., Heat, L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. — J. exp. Bot. 53: 1331–1334, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Arora, R., Pitchay, D.S., Bearce, B.C.: Water-stress-induced heat tolerance in geranium leaf tissues: a possible linkage through stress proteins? — Physiol. Plant. 103: 24–34, 1998.

    Article  CAS  Google Scholar 

  • Babu, N.R., Devraj, V.R.: High temperature and salt stress response in French bean (Phaseolus vulgaris). — Aust. J. Crop. Sci. 2: 40–48, 2008.

    Google Scholar 

  • Bagatta, M., Pacifico D., Mandolino, G.: Evaluation of the osmotic adjustment response within the genus Beta. — J. Sugar Beet Res. 45: 119–133, 2008.

    Article  Google Scholar 

  • Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimation water deficit in leaves. — Aust. J. biol. Sci. 15: 413–428, 1962.

    Google Scholar 

  • Bassil, E., Coku, A., Blumwald, E.: Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. — J. exp. Bot. 63: 5727–5740, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Borisova, T.A., Bugaje, S.M., Meshkova, N.V., Vlasov, P.V.: Heat shock increases the tolerance of plants to UV-B radiation: 1. Growth, development, and water supply to tissues. — Russ. J. Plant Physiol. 48: 507–513, 2001.

    Article  CAS  Google Scholar 

  • Boston, R.S., Viitanen, P.V., Vierling, E.: Molecular chaperones and protein folding in plants. — Plant mol. Biol. 32: 191–222, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Bowler, C., Fluhr, R.: The role of calcium and activated oxygen as signals for controlling cross-tolerance. — Trends Plant. Sci. 5: 241–246, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Chao, G., Singh, K.B.: The promoter of a H2O2- inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. — Plant. J. 10: 955–966, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Cramer, G.R.: Differential effects of salinity on leaf elongation kinetics of three grass species. — Plant Soil 253: 233–244, 2003.

    Article  CAS  Google Scholar 

  • Delane, R., Greenway, H., Munns, R., Gibbs, J.: Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. I. Relationship between solute concentration and growth. — J. exp. Bot. 33: 557–573, 1982.

    Article  CAS  Google Scholar 

  • Fedina, I.S., Nedeva, D., Çiçek, N.: Pre-treatment with H2O2 induces salt tolerance in barley seedlings. — Biol. Plant. 53: 321–24, 2009.

    Article  CAS  Google Scholar 

  • Fricke, W., Akhiyarova, G., Wei, W., Alexandersson, E., Miller, A., Kjellbom, P.O., Richardson, A., Wojciechowski, T., Schreiber, L., Veselov, D., Kudoyarova, G., Volkov., V.: The short-term growth response to salt of the developing barley leaf. — J. exp. Bot. 57: 1079–1095, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Fricke, W., Peters, W.S.: The biophysics of leaf growth in salt-stressed barley. A study at the cell level. — Plant Physiol. 129: 374–88, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gechev, T.S., Hille, J.: Hydrogen peroxide as a signal controlling plant programmed cell death. — J. cell. Biol. 168: 17–20, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffin, J.J., Ranney, T.G., Pharr, D.M.: Heat and drought influence photosynthesis, water relation and soluble carbohydrates of two ecotype of redbud (Cercis canadensis). — J. amer. Soc. hort. Sci. 129: 497–502, 2004.

    CAS  Google Scholar 

  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Von Korff, M., Varshney, R.K., Graner, A., Valkoun, J.: Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. — J. exp. Bot. 60: 3531–3544, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrington, H.M., Alm, D.M.: Interaction of heat and salt shock in cultured tobacco cells. — Plant Physiol. 88: 618–625, 1988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., Fujita, M.: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. — Int. J. mol. Sci. 14: 9643–9684, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hopf, N., Plesofsky-Vig, N., Brambl, R.: The heat shock response of pollen and other tissues of maize. — Plant mol. Biol. 19: 623–630, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Jia, W., Wand, Y., Zhang, S., Zhang, J.: Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. — J. exp. Bot. 378: 2201–2206, 2002.

    Article  Google Scholar 

  • Jiang, Q., Hu, Z., Zhang, H., Ma, Y.: Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. — Crop J. 2: 120–131, 2014.

    Article  Google Scholar 

  • Jiang, Y., Huang, B.: Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. — J. exp. Bot. 52: 341–9, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Koh, M., Kim, H.J.: The effect of metallothionein on the activity of enzymes involved in removal of reactive oxygen species. — Bull. korean chem. Soc. 22: 362–366, 2001.

    CAS  Google Scholar 

  • Kruse, E., Liu, Z., Kloppstech, K.: Expression of heat shock proteins during development of barley. — Plant mol. Biol. 23: 111–122, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Lafuente, M.T., Belver, A., Guye, M.G., Saltveit, M.E.: Effect of temperature conditioning on chilling injury of cucumber cotyledons. — Plant Physiol. 95: 443–449, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis, J.G., Learmonth, R.P., Watson, K.: Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. — Microbiology 141: 687–694, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L. J., Yu, C. M., Li, X. M., Li, Y. Y., Wang, L. L., Ma, C. Y., Tao, S. Y., Bu, N.: Pretreatment with NaCl induces tolerance of rice seedlings to subsequent Cd or Cd + NaCl stress. — Biol. Plant. 57: 567–570, 2013.

    Article  CAS  Google Scholar 

  • Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H.T., Marmiroli, N.: Molecular genetics of heat tolerance and heat shock proteins in cereals. — Plant mol. Biol. 48: 667–681, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G., Suzuki, N., Ciftci-Ylmaz, S., Mittler, R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. — Plant Cell Environ. 33: 453–467, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Mirouze, M., Paszkowski, J.: Epigenetic contribution to stress adaptation in plants. — Curr. Opin. Plant Biol. 14: 267–274, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AP2/ERF family transcription factors in plant abiotic stress responses. — Biochim. biophys. Acta 1819: 86–96, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress. — Plant Cell Environ. 25: 239–250, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Passioura, J.B., Guo, J., Chazen, O., Cramer, G.R.: Water relations and leaf expansion: importance of time scale. — J. exp. Bot. 51: 1495–1504, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59:651–81, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Natarajan, S., Kuehny, J.S.: Morphological, physiological, and anatomical characteristics associated with heat preconditioning and heat tolerance in Salvia splendens. — J. amer. Soc. hort. Sci. 133: 527–534, 2008.

    Google Scholar 

  • Ogawa, K., Kanematsu, S., Asada, K.: Intra- and extra-cellular localization of “cytosolic” CuZn superoxide dismutase in spinach leaf and hypocotyl. — Plant Cell Physiol. 37: 790–799, 1996.

    Article  CAS  Google Scholar 

  • Öztürk, Z.N., Talame, V., Deyholos, M., Michalowski, C.B., Galbrait, W., Gözükırmızı, N., Tuberosa, R., Bohnert, H.J.: Monitoning large-scale changes in transcript abundance in drought and salt-stressed barley. — Plant mol. Biol. 48: 551–573, 2002.

    Article  Google Scholar 

  • Passioura, J.B., Munns, R.: Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. — Aust. J. Plant Physiol. 7: 941–948, 2000.

    Google Scholar 

  • Patel, D., Franklin, K.A.: Temperature-regulation of plant architecture. — Plant Signal. Behav. 4: 577–579, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrov, V.D., Van Breusegem, F.: Hydrogen peroxide — a central hub for information flow in plant cell. — AoB Plants 2012: pls014, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pitman, M.G., Lauchli, A.: Global impact of salinity and agricultural ecosystems. — In: Lauchli A, Luttge U. (ed.): Salinity: Environment-Plants-Molecules. Pp. 3–20. Kluwer Academic Press, Dordrecht 2002.

    Google Scholar 

  • Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J., Von Korff, M.: Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). — J. exp. Bot. 64: 3201–3212, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roslyakova, T.V., Molchan, O.V., Vasekina, A.V., Lazareva, E.M., Sokolik, A.I., Yurin, V.M., De Boer, A.H., Babakov, A.V.: Salt tolerance of barley: relations between expression of isoforms of vacuolar Na+/H+-antiporter and 22Na+ accumulation. — Russ. J. Plant Physiol. 58: 24–35, 2011.

    Article  CAS  Google Scholar 

  • Scafaro, A.P., Haynes, P.A., Atwell, B.J.: Physiological and molecular changes in Oryza meridionalis Ng., a heattolerant species of wild rice. — J. exp. Bot. 61: 191–202, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scandalios, J.G., Guan, L., Polidoros, A.N.: Catalases in plants: gene structure, properties, regulation and expression. — In: Scandalios, J.G. (ed.): Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Pp. 343–406. Cold Spring Harbor Laboratory Press, New York 1997.

    Google Scholar 

  • Senthil-Kumar, M., Srikanthbabu, V., Mohanraju, B., Kumar, G., Shivaprakash, N., Udayakumar, M.: Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. — J. exp. Bot. 54: 2569–2578, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Serrano, R., Mulet, J.M., Rios, G., Marquez, J.A., De Larrinoa, I.F., Leube, M.P., Mendizabal, I, Pascual-Ahuir, A., Proft, M., Ros, R., Montesinos, C.: A glimpse of the mechanisms of ion homeostasis during salt stress. — J. exp. Bot. 50: 1023–1036, 1999.

    Article  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signalling pathways. — Curr. Opin. Plant Biol. 3: 217–223, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Süle, A., Vanrobaeys, F., Hajòs, G., Van Beeumen, J., Devreese, B.: Proteomic analysis of small heat shock protein isoforms in barley shoots. — Phytochemistry 65: 1853–1863, 2004.

    Article  PubMed  Google Scholar 

  • Tan, W., Meng, Q.W., Brestic, M., Olsovska, K., Yang, X.: Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. — J. Plant Physiol. 168: 2063–2071, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Tsaftaris, A.S., Bosabalidis, A.M., Scandalios, J.G.: Cell-typespecific gene expression and a catalasemic peroxisomes in a null Cat2 catalase mutant of maize. — Proc. nat. Acad. Sci. USA 80: 4455–4459, 1983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira dos Santos, C., Rey, P.: Plant thioredoxins are key actors in oxidative stress response. — Trends Plant Sci. 11: 329–334, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Vysotskaya, L., Hedley, P.E., Sharipova, G., Veselov, D., Kudoyarova, G., Morris, J., Jones, H.G.: Effect of salinity on water relations of wild barley plants differing in salt tolerance. — AoB Plants 2010: plq006, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, W.X., Vinocur, B., Arie, A.: Plants responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A.: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. — Trends Plant Sci. 9: 244–252, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Xue, G.P., Loverridge, C.W.: HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. — Plant J. 37: 326–339, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.K.: Plant salt tolerance. — Trends Plant Sci. 6: 66–71, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gürel.

Additional information

Acknowledgements. The authors thank Nazaret Poyraz for technical assistance. This work was supported by the Scientific Research Projects Coordination Unit of the Istanbul University (No. BAP 4712) and the Erasmus Exchange Program to M.F.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faralli, M., Lektemur, C., Rosellini, D. et al. Effects of heat shock and salinity on barley growth and stress-related gene transcription. Biol Plant 59, 537–546 (2015). https://doi.org/10.1007/s10535-015-0518-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0518-x

Additional key words

Navigation