Skip to main content
Log in

Genome-wide identification of the mildew resistance locus O (MLO) gene family in novel cereal model species Brachypodium distachyon

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Powdery mildew (PM) is an important plant fungal disease that adversely affects a broad range of angiosperm species, including grass families such as wheat and barley. The MLO (powdery mildew locus O) protein acts as a negative regulator in PM-resistance. Loss-of-function mutation in MLO shows complete resistance to PM disease. In this study, for the first time we reported MLO gene family members in Brachypodium distachyon, model species for grass. 11 well-conserved BdMLO genes were identified on all five chromosomes with a scattered occurrence rather than clustered. The subcellular localization and topology analyses confirmed that all BdMLO proteins anchored to plasma membrane. The seven trans-membrane (TM) and calmodulin-binding domain (CaMBD) sites were well conserved. Amino acid composition showed that BdMLO proteins were leucine-rich (9.9–13.1 %) except BdMLO5 and BdMLO8, which were alanine-rich (10.0 %) and serine-rich (8.7 %), respectively. In silico functional dissection of cis-acting elements revealed that BdMLOs were associated with mainly hormonal, stress, light response and tissue-specific signaling pathways. Phylogenetic relations of BdMLOs within distinct plant species (Arabidopsis, barley, wheat, maize, rice, tomato, pea, pepper and peach) were evaluated. Also, digital expressions of BdMLOs in drought, cold and pathogen infection conditions revealed stress-responsive MLO genes. Phylogenetic and expression analyses provided preliminary evidence that BdMLO2 could be the best susceptibility gene which may play important role in PM resistance. It was concluded that identification and characterization of MLO gene members in Brachypodium will provide essential knowledge for studying full-scale functional analysis of these genes in grass species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acevedo-Garcia, J., Kusch, S., & Panstruga, R. (2014). Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytologist, 204(2), 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Appiano, M., Pavan, S., Catalano, D., Zheng, Z., Bracuto, V., Lotti, C., et al. (2015). Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1. Transgenic Research, 24, 847–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, Y., Pavan, S., Zheng, Z., Zappel, N. F., Reinstädler, A., Lotti, C., et al. (2008). Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Molecular Plant-Microbe Interactions, 21(1), 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, gkp335.

  • Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., et al. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88(5), 695–705.

    Article  PubMed  Google Scholar 

  • Caraux, G., & Pinloche, S. (2005). PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21(7), 1280–1281.

    Article  CAS  PubMed  Google Scholar 

  • Chang, J. M., Di Tommaso, P., Taly, J. F., & Notredame, C. (2012). Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinformatics, 13(Suppl 4), S1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Hartmann, H. A., Wu, M. J., Friedman, E. J., Chen, J. G., Pulley, M., et al. (2006). Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Molecular Biology, 60(4), 583–597.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Wang, Y., & Zhang, H. (2014). Genome-wide analysis of the mildew resistance locus o (MLO) gene family in tomato (Solanum lycopersicum L.). Plant Omics J, 7(2), 87–93.

    Google Scholar 

  • Consonni, C., Humphry, M. E., Hartmann, H. A., Livaja, M., Durner, J., Westphal, L., et al. (2006). Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38(6), 716–720.

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh, R., Singh, V. K., & Singh, B. D. (2014). Comparative phylogenetic analysis of genome-wide Mlo gene family members from Glycine max and Arabidopsis thaliana. Molecular Genetics & Genomics, 289(3), 345–359.

    Article  CAS  Google Scholar 

  • Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., von Heijne, G., & Schulze-Lefert, P. (1999). Topology, subcellular localization, and sequence diversity of the Mlo family in plants. Journal of Biological Chemistry, 274(49), 34993–35004.

    Article  CAS  PubMed  Google Scholar 

  • Devoto, A., Hartmann, H. A., Piffanelli, P., Elliott, C., Simmons, C., Taramino, G., et al. (2003). Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. Journal of Molecular Evolution, 56(1), 77–88.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, C., Zhou, F., Spielmeyer, W., Panstruga, R., & Schulze-Lefert, P. (2002). Functional conservation of wheat and rice MLO orthologs in defense modulation to the powdery mildew fungus. Molecular Plant-Microbe Interactions, 15(10), 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  • Feechan, A., Jermakow, A. M., Torregrosa, L., Panstruga, R., & Dry, I. B. (2009a). Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Functional Plant Biology, 35(12), 1255–1266.

  • Feechan, A., Jermakow, A. M., & Dry, I. B. (2009b). Grapevine MLO candidates required for powdery mildew pathogenicity? Plant Signaling & Behavior, 4(6), 522–523.

    Article  Google Scholar 

  • Fitzgerald, T. L., Powell, J. J., Schneebeli, K., Hsia, M. M., Gardiner, D. M., Bragg, J. N., et al. (2015). Brachypodium as an emerging model for cereal–pathogen interactions. Annals of Botany, 115(5), 717–731.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker, & N. J. Totowa (Eds.), The Proteomics Protocols Handbook (pp. 571–607). Humana Press.

  • Girin, T., David, L. C., Chardin, C., Sibout, R., Krapp, A., Ferrario-Méry, S., & Daniel-Vedele, F. (2014). Brachypodium: a promising hub between model species and cereals. Journal of Experimental Botany, 65(19), 5683–5696.

    Article  PubMed  Google Scholar 

  • Gu, Z., Cavalcanti, A., Chen, F. C., Bouman, P., & Li, W. H. (2002). Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Molecular Biology and Evolution, 19(3), 256–262.

    Article  CAS  PubMed  Google Scholar 

  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  • Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2014). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296–1297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphry, M., Reinstaedler, A., Ivanov, S., Bisseling, T., & Panstruga, R. (2011). Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Molecular Plant Pathology, 12(9), 866–878.

    Article  CAS  PubMed  Google Scholar 

  • Jones, H., Whipps, J. M., & Gurr, S. J. (2001). The tomato powdery mildew fungus Oidium neolycopersici. Molecular Plant Pathology, 2(6), 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, I. H. (1992). Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 63(1-2), 141–152.

    Article  Google Scholar 

  • Kim, D. S., & Hwang, B. K. (2012). The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. The Plant Journal, 72(5), 843–855.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. C., Lee, S. H., Kim, J. K., Chun, H. J., Choi, M. S., Chung, W. S., et al. (2002a). MLO, a modulator of plant defense and cell death, is a novel calmodulin-binding protein isolation and characterization of a rice Mlo homologue. Journal of Biological Chemistry, 277(22), 19304–19314.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. C., Panstruga, R., Elliott, C., Müller, J., Devoto, A., Yoon, H. W., et al. (2002b). Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 416(6879), 447–451.

    Article  CAS  PubMed  Google Scholar 

  • Konishi, S., Sasakuma, T., & Sasanuma, T. (2010). Identification of novel MLO family members in wheat and their genetic characterization. Genes & Genetic Systems, 85(3), 167–175.

    Article  CAS  Google Scholar 

  • Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S., & Kogel, K. H. (2001). A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology, 91(2), 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic, I., Copley, R. R., Schmidt, S., Ciccarelli, F. D., Doerks, T., Schultz, J., et al. (2004). SMART 4.0: towards genomic data integration. Nucleic Acids Research, 32(suppl 1), D142–D144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., & Zhu, H. (2008). Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene, 409(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Mochida, K., & Shinozaki, K. (2013). Unlocking Triticeae genomics to sustainably feed the future. Plant & Cell Physiology, 54(12), 1931–1950.

    Article  CAS  Google Scholar 

  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Pasquet, J. C., Chaouch, S., Macadré, C., Balzergue, S., Huguet, S., Martin-Magniette, M. L., et al. (2014). Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genomics, 15(1), 629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavan, S., Schiavulli, A., Appiano, M., Miacola, C., Visser, R. G., Bai, Y., et al. (2013). Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Molecular Breeding, 31(1), 247–253.

    Article  CAS  Google Scholar 

  • Pessina, S., Pavan, S., Catalano, D., Gallotta, A., Visser, R. G., Bai, Y., et al. (2014). Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics, 15(1), 618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piffanelli, P., Zhou, F., Casais, C., Orme, J., Jarosch, B., Schaffrath, U., et al. (2002). The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiology, 129(3), 1076–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., et al. (2011). The Pfam protein families database. Nucleic Acids Research, gkr1065.

  • Reddy, V. S., Ali, G. S., & Reddy, A. S. N. (2003). Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains. Plant Molecular Biology, 52(1), 143–159.

    Article  CAS  PubMed  Google Scholar 

  • Schauser, L., Wieloch, W., & Stougaard, J. (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. Journal of Molecular Evolution, 60(2), 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Schouten, H. J., Krauskopf, J., Visser, R. G., & Bai, Y. (2014). Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica, 200(3), 475–486.

    Article  CAS  Google Scholar 

  • Seifi, A., Gao, D., Zheng, Z., Pavan, S., Faino, L., Visser, R. G., et al. (2014). Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum lycopersicum) and its wild relatives. European Journal of Plant Pathology, 138(3), 641–665.

    Article  CAS  Google Scholar 

  • Singh, V. K., Singh, A. K., Chand, R., & Singh, B. D. (2012). Genome wide analysis of disease resistance MLO gene family in sorghum [Sorghum bicolor (L.) Moench]. Journal of Plant Genomic, 2(1), 18–27.

    CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tusnady, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics, 17(9), 849–850.

    Article  CAS  PubMed  Google Scholar 

  • Verelst, W., Bertolini, E., De Bodt, S., Vandepoele, K., Demeulenaere, M., Pè, M. E., & Inzé, D. (2012). Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Molecular Plant, sss098.

  • Wolter, M., Hollricher, K., Salamini, F., & Schulze-Lefert, P. (1993). The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Molecular & General Genetics, 239(1-2), 122–128.

    CAS  Google Scholar 

  • Yang, S., Zhang, X., Yue, J. X., Tian, D., & Chen, J. Q. (2008). Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics & Genomics, 280(3), 187–198.

    Article  CAS  Google Scholar 

  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12(1), 7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 64(3), 643–651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Tombuloglu.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Author1 declares that he has no conflict of interest. Author2 declares that he has no conflict of interest.

Electronic supplementary material

Online Resource 1

Functions of the cis-regulatory elements that found in the promoter regions of the BdMLO genes. (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ablazov, A., Tombuloglu, H. Genome-wide identification of the mildew resistance locus O (MLO) gene family in novel cereal model species Brachypodium distachyon . Eur J Plant Pathol 145, 239–253 (2016). https://doi.org/10.1007/s10658-015-0833-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0833-2

Keywords

Navigation