Skip to main content
Log in

Markov–Dubins path via optimal control theory

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Markov–Dubins path is the shortest planar curve joining two points with prescribed tangents, with a specified bound on its curvature. Its structure, as proved by Dubins in 1957, nearly 70 years after Markov posed the problem of finding it, is elegantly simple: a selection of at most three arcs are concatenated, each of which is either a circular arc of maximum (prescribed) curvature or a straight line. The Markov–Dubins problem and its variants have since been extensively studied in practical and theoretical settings. A reformulation of the Markov–Dubins problem as an optimal control problem was subsequently studied by various researchers using the Pontryagin maximum principle and additional techniques, to reproduce Dubins’ result. In the present paper, we study the same reformulation, and apply the maximum principle, with new insights, to derive Dubins’ result again. We prove that abnormal control solutions do exist. We characterize these solutions, which were not studied adequately in the literature previously, as a concatenation of at most two circular arcs and show that they are also solutions of the normal problem. Moreover, we prove that any feasible path of the types mentioned in Dubins’ result is a stationary solution, i.e., that it satisfies the Pontryagin maximum principle. We propose a numerical method for computing Markov–Dubins path. We illustrate the theory and the numerical approach by three qualitatively different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  2. Aronna, M.S., Bonnans, J.F., Dmitruk, A.V., Lotito, P.A.: Quadratic order conditions for bang-singular extremals. Num. Alg. Contr. Optim. 2, 511–546 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ayala, J., Rubinstein, H.: The classification of homotopy classes of bounded curvature paths. Isr. J. Math. 213, 79–107 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Augustin, D., Maurer, H.: Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems. Control Cybern. 29, 11–31 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Bakolas, E., Tsiotras, P.: Optimal synthesis of the Zermelo–Markov–Dubins problem in a constant drift field. J. Optim. Theory Appl. 156, 469–492 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Banihashemi, N., Kaya, C.Y.: Inexact restoration for Euler discretization of box-constrained optimal control problems. J. Optim. Theory Appl. 156, 726–760 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM Publications, Philadelphia (2014)

    Book  MATH  Google Scholar 

  9. Boissonnat, J.-D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. Plus courts chemins de courbure bornée dans le plan, INRIA internal report. (1991)

  10. Boissonnat, J.-D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. J. Intel. Robot. Syst. 11, 5–20 (1994)

    Article  MATH  Google Scholar 

  11. Chang, A.J., Brazil, M., Rubinstein, J.H., Thomas, D.A.: Curvature-constrained directional-cost paths in the plane. J. Glob. Optim. 53, 663–681 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chang, A.J., Brazil, M., Rubinstein, J.H., Thomas, D.A.: Optimal curvature and gradient-constrained directional-cost paths in 3-space. J. Glob. Optim. 62, 507–527 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chitour, Y., Sigalotti, M.: Dubins’ problem on surfaces. I. Nonnegative curvature. J. Geom. Anal. 15, 565–587 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Clarke, F.H., Vinter, R.B.: Applications of multiprocesses. SIAM J. Control Optim. 27, 1048–1071 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dubins, L.E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Am. J. Math. 79, 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole Publishing Company, Cengage Learning, Pacific Grove, Boston (2003)

    MATH  Google Scholar 

  17. Fraichard, T., Scheuer, A.: From Reeds and Shepp’s to continuous-curvature paths. IEEE Trans. Robot. 20, 1025–1035 (2004)

    Article  Google Scholar 

  18. Gal, O., Deutsher, Y.: Fast and efficient visible trajectories planning for the Dubins UAV model in 3D built-up environments. Robotica 32, 143–163 (2014)

    Article  Google Scholar 

  19. Gao, C., Zhen, Z.Y., Gong, H.J.: A self-organized search and attack algorithm for multiple unmanned aerial vehicles. Aerosp. Sci. Technol. 54, 229–240 (2016)

    Article  Google Scholar 

  20. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Isaiah, P., Shima, T.: Motion planning algorithms for the Dubins travelling salesperson problem. Automatica 53, 247–255 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kaya, C.Y.: Inexact restoration for Runge–Kutta discretization of optimal control problems. SIAM J. Numer. Anal. 48(4), 1492–1517 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaya, C.Y., Martínez, J.M.: Euler discretization for inexact restoration and optimal control. J. Optim. Theory Appl. 134, 191–206 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaya, C.Y., Maurer, H.: A numerical method for nonconvex multi-objective optimal control problems. Comput. Optim. Appl. 57(3), 685–702 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kaya, C.Y., Noakes, J.L.: Computational algorithm for time-optimal switching control. J. Optim. Theory Appl. 117, 69–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kaya, C.Y., Noakes, J.L.: Finding interpolating curves minimizing \(L^\infty \) acceleration in the Euclidean space via optimal control theory. SIAM J. Control Optim. 51, 442–464 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kreĭn, M.G., Nudel’man, A.A.: The Markov Moment Problem and Extremal Problems, Translations of Mathematical Monographs. American Mathematical Society, Providence (1977)

    MATH  Google Scholar 

  28. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  29. Markov, A.A.: Some examples of the solution of a special kind of problem on greatest and least quantities. Soobscenija Charkovskogo Matematiceskogo Obscestva 2–1(5,6), 250–276 (1889). (in Russian)

    Google Scholar 

  30. Maurer, H., Büskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification of second order sufficient conditions for bang–bang controls. Optim. Control Appl. Methods 26, 129–156 (2005)

    Article  MathSciNet  Google Scholar 

  31. Meyer, Y., Isaiah, P., Shima, T.: On Dubins paths to intercept a moving target. Automatica 53, 256–263 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze , R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes (Russian), English translation by K. N. Trirogoff, (ed.) by L. W. Neustadt. Interscience Publishers, New York (1962)

  33. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145, 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  34. Sigalotti, M., Chitour, Y.: Dubins’ problem on surfaces II: nonpositive curvature. SIAM J. Control Optim. 45, 457–482 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shkel, A.M., Lumelsky, V.: Classification of the Dubins set. Robot. Auton. Syst. 34, 179–202 (2001)

    Article  MATH  Google Scholar 

  36. Sussmann, H.J.: Shortest 3-dimensional paths with a prescribed curvature bound. In: Proceedings of the 34th IEEE Conference Decision and Control, New Orleans, LA, USA, Dec 1995, pp. 3306–3312

  37. Sussmann, H.J.: The Markov–Dubins problem with angular acceleration control. In: Proceedings of the 36th IEEE Conference Decision and Control, San Diego, CA, USA, Dec 1997, pp. 2639–2643

  38. Sussmann, H.J., Tang, G.: Shortest paths for the Reeds–Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control. Rutgers Center for Systems and Control (Sycon) Report 91–10, Sept 1991

  39. Tokekar, P., Karnad, N., Isler, V.: Energy-optimal trajectory planning for car-like robots. Auton. Robot. 37, 279–300 (2014)

    Article  Google Scholar 

  40. Vossen, G.: Switching time optimization for bang-bang and singular controls. J. Optim. Theory Appl. 144, 409–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Progr. 106, 25–57 (2006)

    Article  MATH  Google Scholar 

  42. Wang, Y., Wang, S., Tan, M., Zhou, C., Wei, Q.: Real-time dynamic Dubins-helix method for 3-D trajectory smoothing. IEEE Trans. Control Syst. Technol. 23, 730–736 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Helmut Maurer for pointing to Reference [2], after a talk the author had presented on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yalçın Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, C.Y. Markov–Dubins path via optimal control theory. Comput Optim Appl 68, 719–747 (2017). https://doi.org/10.1007/s10589-017-9923-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9923-8

Keywords

Mathematics Subject Classification

Navigation