Skip to main content
Log in

Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm’s performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Algorithm 2
Algorithm 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

PO:

Puma optimizer

rand :

A random number between [0,1]

UM:

Unimodal

randn :

Random numbers in the normal interval

MM:

Multimodal

mean :

Mean function

CM:

Composition

Iter :

Current number of iterations

SM:

Scalable Multimodal function

FM:

Fixed-dimension multimodal function

Puma male :

Best search agent

MaxIter :

Max number of iterations

Npop :

Total number of search agent

cos :

Function of cosine

X i :

Current search agent

Ub :

The Upper bound of search spaces

Cost :

The cost of the solution

Lb :

The lower bound of search spaces

exp :

Exponential function

EB:

Evolutionary based

SB:

Swarm-based

HP:

Human-based

iterations:

Max number of iterations

PB:

Physic-based

Best:

The best result

population:

Number of pumas

Worst:

The worst result

Mean:

Average results

MLP:

Multi-layer perceptron

STD:

Standard deviation

FS:

Feature selection

CD:

Community detection

FCCD:

The face-centered central composite design

DC:

Data clustering

SCA:

Sine cosine algorithm

FHO:

Fire hawk optimizer

SAO:

Smell agent optimization

TSA:

Tunicate swarm algorithm

GWO:

Gray wolf algorithm

MFO:

Moth-flame optimization algorithm

WOA:

Whale optimization algorithm

DMOA:

Dwarf mongoose optimization algorithm

PSO:

Particle swarm optimization

BAT:

Bat algorithm

GA:

Genetic algorithm

ABC:

Artificial bee colony

FFA:

Farmland fertility algorithm

BBO:

Biogeography-Based optimizer

SMA:

Slime mould algorithm

CSO:

Cuckoo search optimization

References

  1. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Global Optim. 45, 3–38 (2009)

    Article  MathSciNet  Google Scholar 

  2. Törn, A., Zilinskas, A.: Global optimization. Springer, Berlin (1989)

    Book  Google Scholar 

  3. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1, 235–306 (2002)

    Article  MathSciNet  Google Scholar 

  4. Beyer, H.-G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)

    Article  MathSciNet  Google Scholar 

  5. Gharehchopogh, F.S., Gholizadeh, H.: A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol. Comput. 48, 1–24 (2019)

    Article  Google Scholar 

  6. Talbi, E.-G.: Metaheuristics: from design to implementation. John Wiley & Sons, Hoboken (2009)

    Book  Google Scholar 

  7. Khodadadi, N., et al.: Chaotic stochastic paint optimizer (CSPO). In: Proceedings of 7th International Conference on Harmony Search Soft Computing and Applications: ICHSA 2022. Springer, Singapore (2022)

    Google Scholar 

  8. Deb, K., Deb, K.: Multi-objective optimization. In: Search methodologies: introductory tutorials in optimization and decision support techniques, pp. 403–449. Springer, Boston (2013)

    Google Scholar 

  9. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341 (1997)

    Article  MathSciNet  Google Scholar 

  10. Kennedy, J. Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks. IEEE (1995)

  11. Trojovský, P., Dehghani, M.: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors 22(3), 855 (2022)

    Article  Google Scholar 

  12. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  13. El-kenawy, E.-S.M., et al.: Al-Biruni Earth Radius (BER) metaheuristic search optimization algorithm. Comput. Syst. Sci. Eng. 45, 1917–1934 (2023)

    Article  Google Scholar 

  14. Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  15. Shayanfar, H., Gharehchopogh, F.S.: Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl. Soft Comput. 71, 728–746 (2018)

    Article  Google Scholar 

  16. Rardin, R.L., Rardin, R.L.: Optimization in operations research. Prentice Hall Upper Saddle River, NJ (1998)

    Google Scholar 

  17. Rao, S.S.: Engineering optimization: theory and practice. John Wiley & Sons, Hoboken (2019)

    Book  Google Scholar 

  18. Khodadadi, N., Talatahari, S., Gandomi, A.H.: ANNA advanced neural network algorithm for optimisation of structures. Proc. Inst. Civil Eng. Struct. Build. (2023). https://doi.org/10.1680/jstbu.22.00083

    Article  Google Scholar 

  19. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  20. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  21. Yapici, H., Cetinkaya, N.: A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 78, 545–568 (2019)

    Article  Google Scholar 

  22. Faramarzi, A., et al.: Equilibrium optimizer: a novel optimization algorithm. Knowl. Based Syst. 191, 105190 (2020)

    Article  Google Scholar 

  23. Trojovský, P., Dehghani, M.: A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 8, e976 (2022)

    Article  Google Scholar 

  24. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications: 5th International Symposium, SAGA 2009, Sapporo, Japan, pp. 26–28. Springer, Berlin (2009)

    Google Scholar 

  25. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  26. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  27. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  28. Mirjalili, S., et al.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  29. Abdollahzadeh, B., et al.: Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Adv. Eng. Softw. 174, 103282 (2022)

    Article  Google Scholar 

  30. Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Design Eng. 3(1), 24–36 (2016)

    Article  Google Scholar 

  31. Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S.: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 36(10), 5887–5958 (2021)

    Article  Google Scholar 

  32. Kaveh, A., Talatahari, S., & Khodadadi, N. (2020). Stochastic paint optimizer: theory and application in civil engineering. Engineering with Computers, 1–32

  33. Kumar, N., Singh, N., Vidyarthi, D.P.: Artificial lizard search optimization (ALSO): a novel nature-inspired meta-heuristic algorithm. Soft. Comput. 25(8), 6179–6201 (2021)

    Article  Google Scholar 

  34. Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S.: African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 158, 107408 (2021)

    Article  Google Scholar 

  35. Faramarzi, A., et al.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Article  Google Scholar 

  36. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  37. Cheraghalipour, A., Hajiaghaei-Keshteli, M., Paydar, M.M.: Tree growth algorithm (TGA): a novel approach for solving optimization problems. Eng. Appl. Artif. Intell. 72, 393–414 (2018)

    Article  Google Scholar 

  38. Tang, D., et al.: ITGO: invasive tumor growth optimization algorithm. Appl. Soft Comput. 36, 670–698 (2015)

    Article  Google Scholar 

  39. Dehghani, M., et al.: Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl. Based Syst. 259, 110011 (2023)

    Article  Google Scholar 

  40. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  41. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  42. Erol, O.K., Eksin, I.: A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Article  Google Scholar 

  43. Formato, R.A.: Central force optimization. Prog. Electromagn. Res. 77(1), 425–491 (2007)

    Article  Google Scholar 

  44. Abedinpourshotorban, H., et al.: Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol. Comput. 26, 8–22 (2016)

    Article  Google Scholar 

  45. Dehghani, M., Trojovská, E., Trojovský, P.: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 12(1), 9924 (2022)

    Article  Google Scholar 

  46. Hashim, F.A., et al.: Henry gas solubility optimization: a novel physics-based algorithm. Futur. Gener. Comput. Syst. 101, 646–667 (2019)

    Article  Google Scholar 

  47. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2016)

    Article  Google Scholar 

  48. Kumar, M., Kulkarni, A.J., Satapathy, S.C.: Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Futur. Gener. Comput. Syst. 81, 252–272 (2018)

    Article  Google Scholar 

  49. Zhang, Q., et al.: Collective decision optimization algorithm: a new heuristic optimization method. Neurocomputing 221, 123–137 (2017)

    Article  Google Scholar 

  50. Ackerman, B.B., Lindzey, F.G., Hemker, T.P.: Cougar food habits in southern Utah. J. Wildl. Manag. 48, 147–155 (1984)

    Article  Google Scholar 

  51. Robinette, W.L., Gashwiler, J.S., Morris, O.W.: Food habits of the cougar in Utah and Nevada. J. Wildl. Manag. 23(3), 261–273 (1959)

    Article  Google Scholar 

  52. Knopff, K.H., et al.: Cougar kill rate and prey composition in a multiprey system. J. Wildl. Manag. 74(7), 1435–1447 (2010)

    Google Scholar 

  53. Bartnick, T.D., et al.: Variation in cougar (Puma concolor) predation habits during wolf (Canis lupus) recovery in the southern greater yellowstone ecosystem. Can. J. Zool. 91(2), 82–93 (2013)

    Article  Google Scholar 

  54. Kunkel, K.E., et al.: Winter prey selection by wolves and cougars in and near Glacier National Park Montana. J. Wildl. Manag. 63, 901–910 (1999)

    Article  Google Scholar 

  55. Murphy, K.M., et al.: Encounter competition between bears and cougars: some ecological implications. Ursus 10, 55–60 (1998)

    Google Scholar 

  56. Monroy-Vilchis, O., et al.: Cougar and jaguar habitat use and activity patterns in central Mexico. Anim. Biol. 59(2), 145–157 (2009)

    Article  Google Scholar 

  57. Lambert, C.M., et al.: Cougar population dynamics and viability in the Pacific Northwest. J. Wildl. Manag. 70(1), 246–254 (2006)

    Article  Google Scholar 

  58. LaRue, M.A., et al.: Cougars are recolonizing the midwest: analysis of cougar confirmations during 1990–2008. J. Wildl. Manag. 76(7), 1364–1369 (2012)

    Article  Google Scholar 

  59. Demers, A., et al.: The cougar project: a work-in-progress report. ACM SIGMOD Rec. 32(4), 53–59 (2003)

    Article  Google Scholar 

  60. Anderson, C.R., Jr., Lindzey, F.G.: Estimating cougar predation rates from GPS location clusters. J. Wildl. Manag. 67, 307–316 (2003)

    Article  Google Scholar 

  61. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Parallel Problem Solving from Nature-PPSN XII: 12th International Conference, Taormina, Italy. Springer, Berlin (2012)

    Google Scholar 

  62. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  63. Digalakis, J.G., Margaritis, K.G.: On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 77(4), 481–506 (2001)

    Article  MathSciNet  Google Scholar 

  64. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  65. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  66. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 391, 114570 (2022)

    Article  MathSciNet  Google Scholar 

  67. Kaur, S., et al.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)

    Article  Google Scholar 

  68. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  69. Azizi, M., Talatahari, S., Gandomi, A.H.: Fire hawk optimizer: a novel metaheuristic algorithm. Artif. Intell. Rev. 56(1), 287–363 (2023)

    Article  Google Scholar 

  70. Salawudeen, A.T., et al.: A novel smell agent optimization (SAO): an extensive CEC study and engineering application. Knowl. Based Syst. 232, 107486 (2021)

    Article  Google Scholar 

  71. Balachandran, M., et al.: Optimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite design. Mater. Des. 35, 854–862 (2012)

    Article  Google Scholar 

  72. Gambella, C., Ghaddar, B., Naoum-Sawaya, J.: Optimization problems for machine learning: a survey. Eur. J. Oper. Res. 290(3), 807–828 (2021)

    Article  MathSciNet  Google Scholar 

  73. Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 16, 1–18 (2014)

    Article  Google Scholar 

  74. José-García, A., Gómez-Flores, W.: Automatic clustering using nature-inspired metaheuristics: a survey. Appl. Soft Comput. 41, 192–213 (2016)

    Article  Google Scholar 

  75. Zhou, H., Zhang, Y., Li, J.: An overlapping community detection algorithm in complex networks based on information theory. Data Knowl. Eng. 117, 183–194 (2018)

    Article  Google Scholar 

  76. Jiang, J.Q., McQuay, L.J.: Modularity functions maximization with nonnegative relaxation facilitates community detection in networks. Phys. A 391(3), 854–865 (2012)

    Article  Google Scholar 

  77. Kim, P., Kim, S.: Detecting community structure in complex networks using an interaction optimization process. Phys. A 465, 525–542 (2017)

    Article  Google Scholar 

  78. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  79. Lusseau, D.: Evidence for social role in a dolphin social network. Evol. Ecol. 21, 357–366 (2007)

    Article  Google Scholar 

  80. Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Notices of the AMS 56(9), 1082–1097 (2009)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, BA, NK; Software, BA, NK; Investigation, SB and SK and LA; Writing–original draft, BA and NA; Writing–review & editing, SK, PT and FS; Supervision, SM; Project administration, SM All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nima Khodadadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Tables 25, 26, 27, 28.

Table 25 Details of unimodal benchmark functions
Table 26 Details of multimodal benchmark functions
Table 27 Details of fixed-dimension multimodal benchmark functions
Table 28 The 100-digit challenge basic test functions

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahzadeh, B., Khodadadi, N., Barshandeh, S. et al. Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Comput (2024). https://doi.org/10.1007/s10586-023-04221-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-023-04221-5

Keywords

Navigation