Skip to main content
Log in

Genomic properties of chromosomal bands are linked to evolutionary rearrangements and new centromere formation in primates

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Chromosomal rearrangements in humans are largely related to pathological conditions, and phenotypic effects are also linked to alterations in the expression profile following nuclear relocation of genes between functionally different compartments, generally occupying the periphery or the inner part of the cell nuclei. On the other hand, during evolution, chromosomal rearrangements may occur apparently without damaging phenotypic effects and are visible in currently phylogenetically related species. To increase our insight into chromosomal reorganisation in the cell nucleus, we analysed 18 chromosomal regions endowed with different genomic properties in cell lines derived from eight primate species covering the entire evolutionary tree. We show that homologous loci, in spite of their evolutionary relocation along the chromosomes, generally remain localised to the same functional compartment of the cell nuclei. We conclude that evolutionarily successful chromosomal rearrangements are those that leave the nuclear position of the regions involved unchanged. On the contrary, in pathological situations, the effect typically observed is on gene structure alteration or gene nuclear reposition. Moreover, our data indicate that new centromere formation could potentially occur everywhere in the chromosomes, but only those emerging in very GC-poor/gene-poor regions, generally located in the nuclear periphery, have a high probability of being retained through evolution. This suggests that, in the cell nucleus of related species, evolutionary chromosomal reshufflings or new centromere formation does not alter the functionality of the regions involved or the interactions between different loci, thus preserving the expression pattern of orthologous genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3C:

Chromosome conformation capture

4C:

Chromosome conformation capture-on-chip

5C:

Chromosome conformation capture carbon copy

AC:

Ancestral centromere

BAC:

Bacterial artificial chromosome

Cae :

Cercopithecus aethiops

Cja :

Callithrix jacchus

Cmo :

Callicebus moloch

DAPI:

4′,6-Diamidino-2-phenylindole

ENC:

Evolutionary new centromere

FISH:

Fluorescence in situ hybridisation

Ggo :

Gorilla gorilla

HCN:

Human constitutional new centromeres

Hi-C:

High-throughput chromosome capture

Hsa :

Homo sapiens

LAD:

Lamina associated domain

Lca :

Lemur catta

Mmu :

Macaca mulatta

PHA:

Phytohaemagglutinin

Ptr :

Pan troglodytes

RNL:

Radial nuclear location

SSC:

Saline sodium citrate buffer

TAD:

Topologically associated domain

References

  • Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballabio E, Cantarella CD, Federico C, Di Mare P, Hall G et al (2009) Ectopic expression of the HLXB9 gene is associated with an altered nuclear position in t(7;12) leukaemias. Leukemia 23:1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Bernà L, Chaurasia A, Angelini C, Federico C, Saccone S et al (2012) The footprint of metabolism in the organization of mammalian genomes. BMC Genomics 13:174–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardi G (2015) Chromosome architecture and genome organization. PLoS One 10(11):e0143739. doi:10.1371/journal.pone.0143739

    Article  PubMed  PubMed Central  Google Scholar 

  • Bickmore WA, van der Maarel SM (2003) Perturbations of chromatin structure in human genetic disease: recent advances. Hum Mol Genet 12:207–213

    Article  Google Scholar 

  • Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284

    Article  CAS  PubMed  Google Scholar 

  • Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  CAS  PubMed  Google Scholar 

  • Costantini M, Clay O, Federico C, Saccone S, Auletta F et al (2007) Human chromosomal bands: nested structure, high definition map and molecular basis. Chromosoma 116:36–49

    Article  Google Scholar 

  • Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D et al (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589(20 Pt A):2931–2943

    Article  CAS  PubMed  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P et al (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  • Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL et al (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 6:1299–1309

    Article  Google Scholar 

  • Eder V, Ventura M, Ianigro M, Teti M, Rocchi M et al (2003) Chromosome 6 phylogeny in primates and centromere repositioning. Mol Biol Evol 20:1506–1512

    Article  CAS  PubMed  Google Scholar 

  • Federico C, Cantarella CD, Di Mare P, Tosi S, Saccone S (2008) The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density. Chromosoma 117:399–410

    Article  CAS  PubMed  Google Scholar 

  • Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E et al (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4(3):e1000039. doi:10.1371/journal.pgen.1000039

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organization and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  • Fraser J, Williamson I, Bickmore WA, Dostie J (2015) An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol Mol Biol Rev 79:347–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP et al (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566

    Article  CAS  PubMed  Google Scholar 

  • Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer MP et al (2008) Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121:1876–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepperger C, Otten S, von Hase J, Dietzel S (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116:117–133

    Article  CAS  PubMed  Google Scholar 

  • Jabbari K, Bernardi G (2017) An isochore framework underlies chromatin architecture. PLoS One 12(1):e0168023. doi:10.1371/journal.pone.0168023

    Article  PubMed  PubMed Central  Google Scholar 

  • Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS et al (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192

    Article  CAS  PubMed  Google Scholar 

  • Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM et al (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296:158–162

    Article  CAS  PubMed  Google Scholar 

  • Kupper K, Kolbl A, Biener D, Dittrich S, von Hase J et al (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116:285–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Leotta CG, Federico C, Brundo MV, Tosi S, Saccone S (2014) HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLoS One 9(8):e105481. doi:10.1371/journal.pone.0105481

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282. doi:10.1016/j.ajhg.2007.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montefalcone G, Tempesta S, Rocchi M, Archidiacono N (1999) Centromere repositioning. Genome Res 9:1184–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora L, Sánchez I, Garcia M, Ponsà M (2006) Chromosome territory positioning of conserved homologous chromosomes in different primate species. Chromosoma 115:367–375

    Article  PubMed  Google Scholar 

  • Müller S, Stanyon R, O’Brien PCM, Ferguson-Smith MA, Plesker R et al (1999) Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108:393–400

    Article  PubMed  Google Scholar 

  • Muller S, Finelli P, Neusser M, Wienberg J (2004) The evolutionary history of human chromosome 7. Genomics 84:458–467

    Article  CAS  PubMed  Google Scholar 

  • Neusser M, Schubel V, Koch A, Cremer T, Müller S (2007) Evolutionary conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116:307–320

    Article  PubMed  Google Scholar 

  • Ono A, Kono K, Ikebe D, Muto A, Sun J et al (2007) Nuclear positioning of the BACH2 gene in BCR-ABL positive leukemic cells. Genes Chromosom Cancer 46:67–74

    Article  CAS  PubMed  Google Scholar 

  • Purgato S, Belloni E, Piras FM, Zoli M, Badiale C et al (2015) Centromere sliding on a mammalian chromosome. Chromosoma 124:277–287. doi:10.1007/s00412-014-0493-6

    Article  CAS  PubMed  Google Scholar 

  • Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccone S, Federico C, Bernardi G (2002) Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300:169–178

    Article  CAS  PubMed  Google Scholar 

  • Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T et al (1999) Nuclear organization of mammalian genomes: polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seuànez HN (1979) The phylogeny of human chromosomes. Springer, Berlin

    Book  Google Scholar 

  • Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C et al (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23

    Article  CAS  PubMed  Google Scholar 

  • Stanyon R, Rocchi M, Capozzi O, Roberto R, Misceo D et al (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosom Res 16:17–39

    Article  CAS  Google Scholar 

  • Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y et al (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:59–64. doi:10.1038/nature21429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczerbal I, Foster HA, Bridger JM (2009) The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 118:647–663

    Article  CAS  PubMed  Google Scholar 

  • Tanabe H, Muller S, Neusser M, von Hase J, Calcagno E et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolomeo D, Capozzi O, Stanyon RR, Archidiacono N, D'Addabbo P et al (2017) Epigenetic origin of evolutionary novel centromeres. Sci Rep 3:41980. doi:10.1038/srep41980

    Article  Google Scholar 

  • Tosi S, Mostafa Kamel Y, Owoka T, Federico C, Truong TH et al (2015) Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects. Biomark Res 3:21. doi:10.1186/s40364-015-0041-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsend-Ayush E, Grutzner F, Yue Y, Grossmann B, Hansel U et al (2004) Plasticity of human chromosome 3 during primate evolution. Genomics 83:193–202

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Archidiacono N, Rocchi M (2001) Centromere emergence in evolution. Genome Res 11:595–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D et al (2004) Recurrent sites for new centromere seeding. Genome Res 14:1696–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura M, Antonacci F, Cardone MF, Stanyon R, D’Addabbo P et al (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246

    Article  CAS  PubMed  Google Scholar 

  • Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J et al (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576

    CAS  PubMed  Google Scholar 

  • Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR et al (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Maekawa M (2013) R/G-band boundaries: genomic instability and human disease. Clin Chim Acta 419:108–112. doi:10.1016/j.cca.2013.02.011

    Article  CAS  PubMed  Google Scholar 

  • Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS et al (2014) Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev 28:2778–2791

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodfine K, Fiegler H, Beare DM, Collina JE, McCann OT et al (2004) Replication timing of the human genome. Hum Mol Genet 13:191–202

    Article  CAS  PubMed  Google Scholar 

  • Zink D (2006) The temporal program of DNA replication: new insights into old questions. Chromosoma 115:273–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for constructive comments. This work was supported by P.R.A. to SS and F.I.R. to VF from the University of Catania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Federico.

Additional information

Responsible Editor: Rachel O’Neill

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federico, C., Pappalardo, A.M., Ferrito, V. et al. Genomic properties of chromosomal bands are linked to evolutionary rearrangements and new centromere formation in primates. Chromosome Res 25, 261–276 (2017). https://doi.org/10.1007/s10577-017-9560-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-017-9560-1

Keywords

Navigation