Skip to main content
Log in

Human chromosomal bands: nested structure, high-definition map and molecular basis

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In this paper, we report investigations on the nested structure, the high-definition mapping, and the molecular basis of the classical Giemsa and Reverse bands in human chromosomes. We found the rules according to which the ∼3,200 isochores of the human genome are assembled in high (850-band) resolution bands, and the latter in low (400-band) resolution bands, so forming the nested mosaic structure of chromosomes. Moreover, we identified the borders of both sets of chromosomal bands at the DNA sequence level on the basis of our recent map of isochores, which represent the highest-resolution, ultimate bands. Indeed, beyond the 100-kb resolution of the isochore map, the guanine and cytosine (GC) profile of DNA becomes turbulent owing to the contribution of specific sequences such as exons, introns, interspersed repeats, CpG islands, etc. The isochore-based level of definition (100 kb) of chromosomal bands is much higher than the cytogenetic definition level (2–3 Mb). The major conclusions of this work concern the high degree of order found in the structure of chromosomal bands, their mapping at a high definition, and the solution of the long-standing problem of the molecular basis of chromosomal bands, as these could be defined on the basis of compositional DNA properties alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aota S, Ikemura T (1986) Diversity in G+C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res 14:6345–6355

    Article  PubMed  CAS  Google Scholar 

  • Bailly S, Guillemin C, Labrousse M (1973) Comparison du nombre et de la position des zones spécifiques révélées sur les chromosomes mitotiques de l’Amphibien Urodéle Pleurodeles waltlii Michah par les techniques de coloration au colorant de Giemsa et à la moutarde de quinacrine. CR Acad Sci Paris 276:1867–1869

    Google Scholar 

  • Bernardi G (1989) The isochore organization of the human genome. Ann Rev Genet 23:637–661

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (2004, reprinted in 2005) Structural and evolutionary genomics. Natural selection in genome evolution. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–957

    Article  PubMed  CAS  Google Scholar 

  • Bostock CJ, Sumner AT (1978) The eukaryotic chromosome. North-Holland, Amsterdam NewYork Oxford

    Google Scholar 

  • Caspersson T, Farber S, Foley GE, Kudynowski J, Modest EJ, Simonsson E, Wagh U, Zech L (1968) Chemical differentiation along metaphase chromosomes. Exp Cell Res 49(1):219–222

    Article  PubMed  CAS  Google Scholar 

  • Caspersson T, Zech L, Johansson C (1970) Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60:315–319

    Article  PubMed  CAS  Google Scholar 

  • Claussen U, Lehrer H, Hliscs R, Kuechler A, Weise A, Liehr T (2005) The splitting of human chromosome bands into sub-bands. European Human Genetics Conference 2005 (http://www.eshg.org/eshg2005)

  • Comings DE (1978) Mechanisms of chromosome banding and implications for chromosome structure. A Rev Genet 12:25–46

    Article  CAS  Google Scholar 

  • Corneo G, Ginelli E, Soave C, Bernardi G (1968) Isolation and characterization of mouse and guinea pig satellite DNA’s. Biochemistry 7:4373–4379

    Article  PubMed  CAS  Google Scholar 

  • Costantini M, Clay O, Auletta F, Bernardi G (2006) An isochore map of human chromosomes. Genome Res 16:536–541

    Article  PubMed  CAS  Google Scholar 

  • Cuny G, Soriano P, Macaya G, Bernardi G (1981) The major components of the mouse and human genomes: preparation, basic properties and compositional heterogeneity. Eur J Biochem 111:227–233

    Article  Google Scholar 

  • De Sario A, Geigl EM, Palmieri G, D’Urso M, Bernardi G (1996) A compositional map of human chromosome band Xq28. Proc Natl Acad Sci USA 93:1298–1302

    Article  PubMed  Google Scholar 

  • De Sario A, Roizès G, Allegre N, Bernardi G (1997) A compositional map of the cen-q21 region of human chromosome 21. Gene 194:107–113

    Article  PubMed  Google Scholar 

  • Dev VG, Warburton D, Miller OJ (1972) Giemsa banding of chromosomes. Lancet 1:1285

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B (1973) Nouveau système de marquage chromosomique: les bandes T. Chromosoma 41:395–402

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Lejeune J (1971) A new technique of analysis of the human karyotype. C R Acad Sci Hebd Seances Acad Sci D 272:2638–2640

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Rethorè MO, Lejeune J (1975) Comparison of the karyotype of the orangutan (Pongo pygmaeus) to those of man, chimpanzee, and gorilla. Ann Genet 18:153–161

    PubMed  CAS  Google Scholar 

  • Ellison JR, Barr HJ (1972) Quinacrine fluorescence of specific chromosome regions. Late replication and high A:T content in Samoia leonensis. Chromosoma 36(4):375–390

    Article  PubMed  CAS  Google Scholar 

  • Federico C, Andreozzi L, Saccone S, Bernardi G (2000) Gene density in the Giemsa bands of human chromosomes. Chromosome Res 8:737–746

    Article  PubMed  CAS  Google Scholar 

  • Filipski J, Thiery JP, Bernardi G (1973) An analysis of the bovine genome by Cs2SO4 Ag+ density gradient centrifugation. J Mol Biol 80:177–197

    Article  PubMed  CAS  Google Scholar 

  • Francke U (1994) Digitized and differentially shaded human chromosome idiograms for genomic applications. Cytogenet Cell Genet 6:206–219

    Article  Google Scholar 

  • Furey TS, Haussler D (2003) Integration of the cytogenetic map with the draft human genome sequence. Hum Mol Genet 12:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Furst A, Brown EH, Braunstein JD, Schildkraut CL (1981) Alpha-globulin sequences are located in a region of early-replicating DNA in murine erythroleukemia cells. Proc Natl Acad Sci USA 78:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224:686–692

    Article  PubMed  CAS  Google Scholar 

  • Holmquist GP (1992) Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet 51:17–37

    PubMed  CAS  Google Scholar 

  • Holmquist G, Gray M, Porter T, Jordan J (1982) Characterization of Giemsa dark- and light-band DNA. Cell 31(1):121–129

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T, Aota S (1988) Alternative chromatic structure at CpG islands and quinacrine-brightness of human chromosomes. Global variation in G+C content along vertebrate genoma DNA. Possible correlation with chromosome band structures. J Mol Biol 60:909–920

    Google Scholar 

  • ISCN (1981) An international system for human cytogenetic nomenclature—high-resolution banding. Cytogenet Cell Genet 31:1–23

    Google Scholar 

  • ISCN (2005) An international system for the human cytogenetic nomenclature. In: Schweizer LG, Tommerup N (eds). Karger, Basel

  • Korenberg JR, Engels WR (1978) Base ratio, DNA content, and quinacrine brightness of human chromosomes. Proc Natl Acad Sci USA 75:3382–3386

    Article  PubMed  CAS  Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53(3):391–400

    Article  PubMed  CAS  Google Scholar 

  • Lehrer H, Weise A, Michel S, Starke H, Mrasek K, Heller A, Kuechler A, Claussen U, Liehr T (2004) The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB). Cytogenet Genome Res 105:25–28

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A, Isaksson M, Olsson E (1980) Action of restriction endonucleases on the DNA and chromosmes of Muntiacus muntjak. Hereditas 92:267–273

    Article  PubMed  CAS  Google Scholar 

  • Macaya G, Thiery JP, Bernardi G (1976) An approach to the organization of eukaryotic genomes at a macromolecular level. J Mol Biol 108:237–254

    Article  PubMed  CAS  Google Scholar 

  • Pachmann U, Rigler R (1972) Quantum yield of acridines interacting with DNA of defined sequence. A basis for the explanation of acridine bands in chromosomes. Exp Cell Res 72(2):602–608

    Article  PubMed  CAS  Google Scholar 

  • Pavliček A, Jabbari K, Pačes J, Pačes V, Hejnar J, Bernardi G (2001) Similar integration but different stability of Alus and LINEs in the human genome. Gene 276:39–45

    Article  PubMed  Google Scholar 

  • Rabl C (1885) Über Zelltheilung. Morphologisches Jahrbuch 10:214–230

    Google Scholar 

  • Rooney ED (ed) (2001) Human cytogenetics: constitutional analysis. Oxford University Press, Oxford

    Google Scholar 

  • Saccone S, De Sario A, Della Valle G, Bernardi G (1992) The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl Acad Sci USA 89:4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Saccone S, De Sario A, Wiegant J, Raap AK, Della Valle G, Bernardi G (1993) Correlations between isochores and chromosomal bands in the human genome. Proc Natl Acad Sci USA 90:11929–11933

    Article  PubMed  CAS  Google Scholar 

  • Saccone S, Cacciò S, Kusuda J, Andreozzi L, Bernardi G (1996) Identification of the gene-richest bands in human chromosomes. Gene 174:85–94

    Article  PubMed  CAS  Google Scholar 

  • Saccone S, Federico C, Solovei I, Croquette MF, Della Valle G, Bernardi G (1999) Identification of the gene-richest bands in human prometaphase chromosomes. Chromosome Res 7:379–386

    Article  PubMed  CAS  Google Scholar 

  • Saccone S, Pavliček A, Federico C, Pačes J, Bernardi G (2001) Gene, isochores and bands in human chromosomes 21 and 22. Chromosome Res 9:533–539

    Article  PubMed  CAS  Google Scholar 

  • Saccone S, Federico C, Andreozzi L, D’Antoni S, Bernardi G (2002) Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300:169–178

    Article  PubMed  CAS  Google Scholar 

  • Schimke RT (1982) Gene amplification. Cold Spring Harbor, New York, NY, USA

    Google Scholar 

  • Schmid M (1978) Chromosome banding in amphibians. Chromosoma 68:131–148

    Article  Google Scholar 

  • Schweizer D (1977) R-banding produced by DNase I digestion of chromomycin-stained chromosomes. Chromosoma 64:117–124

    Article  PubMed  CAS  Google Scholar 

  • Stock AD, Mengden GA (1975) Chromosomes banding pattern conservatism in birds and non-homology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma 50:69–77

    Article  PubMed  CAS  Google Scholar 

  • The National Foundation (1972) Standardization in human cytogenetics. Birth defects. In: Proceedings of Paris Conference 1971, Original article series, vol 8, no 7; also in Cytogenetics 11:317–362

  • Thiery JP, Macaya G, Bernardi G (1976) An analysis of eukaryotic genomes by density gradient centrifugation. J Mol Biol 108:219–235

    Article  PubMed  CAS  Google Scholar 

  • Weisblum B, de Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylaterich regions in DNA. Proc Natl Acad Sci USA 69:629–632

    Article  PubMed  CAS  Google Scholar 

  • Wurster-Hill DH, Gray CW (1979) The interrelationship of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet Cell Genet 15:306–331

    Google Scholar 

  • Yunis JJ (1976) High resolution of human chromosomes. Science 191:1268–1270

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ (1981) Mid-prophase human chromosome. The attainment of 2,000 bands. Hum Genet 56:291–298

    Google Scholar 

  • Yunis JJ, Tsai MY, Willey AM (1977) Molecular organization and function of the human genome. In: Yunis JJ (ed) Molecular structure of human chromosomes. Academic, New York, NY

    Google Scholar 

  • Zerial M, Salinas J, Filipski J, Bernardi G (1986) Gene distribution and nucleotide sequence organization in the human genome. Eur J Biochem 160:479–485

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bernardi.

Additional information

Communicated by S. Henikoff

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantini, M., Clay, O., Federico, C. et al. Human chromosomal bands: nested structure, high-definition map and molecular basis. Chromosoma 116, 29–40 (2007). https://doi.org/10.1007/s00412-006-0078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0078-0

Keywords

Navigation