Skip to main content
Log in

Water distribution in wood after short term wetting

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Water has a major influence on wood properties, especially dynamic moisture cycles, which affect the wood in outdoor applications. It is thus important to understand the penetration and distribution of water in wood. In this study, rainfall events were simulated to correspond to water immersion periods of 1 h. Specimens were imaged by magnetic resonance imaging (MRI) after 1 h of immersion. These measurements were used to determine the water distribution in the wood and to elucidate changes during the drying of specimens of five wood species: sweet chestnut heartwood (Castanea sativa), European larch heartwood (Larix decidua), Scots pine heartwood and sapwood (Pinus sylvestris) and Norway spruce (Picea abies). Both gravimetric and MRI analysis showed that after 1 h of immersion, pine sapwood took up the highest amount of water, followed by spruce wood. Considerably lower moisture contents were determined in pine heartwood, chestnut and larch, which correlated with a lower signal intensity. The outer parts of the specimens exhibited similar patterns with all of the specimens. The most variable results were the moisture content time profiles in the middle part of the specimens. Comparison of the MRI measurements and gravimetrically determined moisture contents during drying validated the MRI measurements and confirmed the method to be suitable for giving comprehensive information about the water drying kinetic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida G, Gagné S, Hernández R (2007) A NMR study of water distribution in hardwoods at several equilibrium moisture contents. Wood Sci Technol 41(4):293–307. https://doi.org/10.1007/s00226-006-0116-3

    Article  CAS  Google Scholar 

  • Araujo CD, MacKay AL, Hailey JRT, Whittall KP (1992) Proton magnetic resonance techniques for characterization of water in wood: application to white spruce. Wood Sci Technol 26:101–113. https://doi.org/10.1007/BF00194466

    Article  CAS  Google Scholar 

  • Araujo CD, MacKay AL, Whittall KP, Hailey JRT (1993) A diffusion model for spin–spin relaxation of compartmentalized water in wood. J Magn Reson 101:248–261. https://doi.org/10.1006/jmrb.1993.1041

    Article  CAS  Google Scholar 

  • Azzouz S, Ben Dhib K, Bahar R, Elaieb MT, Elcafsi A (2018) Mass diffusivity of different species of wood in convective drying. Eur J Wood Wood Prod 76:573–582. https://doi.org/10.1007/s00107-017-1212-9

    Article  Google Scholar 

  • Brischke C, Thelandersson S (2014) Modelling the outdoor performance of wood products—a review on existing approaches. Constr Build Mater 66:384–397. https://doi.org/10.1016/j.conbuildmat.2014.05.087

    Article  Google Scholar 

  • Brischke C, Rapp AO, Bayerbach R (2008) Measurement system for long-term recording of wood moisture content with internal conductively glued electrodes. Build Environ 43(10):1566–1574

    Article  Google Scholar 

  • Brownstein KR (1980) Diffusion as an explanation of observed NMR behaviour of water absorbed on wood. J Magn Reson 40:505–510

    CAS  Google Scholar 

  • Bucur V (2003a) Nondestructive characterization and imaging of wood. Springer, Berlin. https://doi.org/10.1007/978-3-662-08986-6

    Book  Google Scholar 

  • Bucur V (2003b) Techniques for high resolution imaging of wood structure: a review. Meas Sci Technol 14:R91–R98. https://doi.org/10.1088/0957-0233/14/12/R01

    Article  CAS  Google Scholar 

  • Cai L (2005) Determination of diffusion coefficients for sub-alpine fir. Wood Sci Technol 39:153–162

    Article  CAS  Google Scholar 

  • Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford

    Google Scholar 

  • Casieri L, Senni M, Romagnoli U, Santamaria F, De Luca C (2004) Determination of moisture fraction in wood by mobile NMR device. J Magn Reson 171:364–372. https://doi.org/10.1016/j.jmr.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  • Chen CM, Wangaard FF (1968) Wettability and the hysteresis effect in the sorption of water vapour by wood. Wood Sci Technol 2:177–187

    Google Scholar 

  • Contreras I, Guesalga A, Fernandez MP, Guarini M, Irarrazaval P (2002) MRI fast tree log scanning with helical undersampled projection acquisitions. Magn Reson Imaging 20:781–787. https://doi.org/10.1016/S0730-725X(02)00602-1

    Article  PubMed  Google Scholar 

  • Cox J, McDonald PJ, Gardiner BA (2010) A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange. Holzforschung 64:259–266

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford, p 60

    Google Scholar 

  • Dietsch P, Franke S, Franke B, Gamper A, Winter S (2014) Methods to determine wood moisture content and their applicability in monitoring concepts. J Civil Struct Health Monit 13:p

    Google Scholar 

  • Dvinskikh SV, Henriksson M, Berglund LA, Furo I (2011) A multinuclear magnetic resonance imaging (MRI) study of wood with adsorbed water: estimating bound water concentration and local wood density. Holzforschung 65:103–107

    Article  CAS  Google Scholar 

  • EN 113 (2006) Wood preservatives—test method for determining the protective effectiveness against wood-destroying basidiomycetes. Determination of toxic values. European Committee for Standardisation, Brussels

    Google Scholar 

  • EN 13183–1 (2002) Moisture content of a piece of sawn timber. Part 1: determination by oven dry method. European Committee for Standardisation, Brussels

    Google Scholar 

  • EN 335 (2013) Durability of wood and wood-based products—use classes: definitions, application to solid wood and wood-based panels. EuropeanCommittee for Standardisation, Brussels

    Google Scholar 

  • Engelund ET, Klamer M, Venås M (2010) Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation: principles and practice. In: 41st annual meeting of the international research group on wood protection, Biarritz, France, 9–13 May 2010. IRG Secretariat

  • Engelund ET, Klamer M, Venås TM (2011) Adsorption boundary curve influenced by step interval of relative humidity investigated by dynamic vapour sorption equipment. In: 42nd annual meeting of the International Research Group on Wood Protection, Queenstown, New Zealand, 2011. IRG Secretariat, Paper IRG/WP 11-40547

  • Fotsing JAM, Tchagang CW (2005) Experimental determination of the diffusion coefficients of wood in isothermal conditions. J Heat Mass Transf 41:977–980

    Article  Google Scholar 

  • Franke B, Widmann R, Müller A, Tannert T (2013) Assessment and monitoring of the moisture content of timber bridges. In: Proceedings international conference on timber bridges, Las Vegas, USA

  • Gezici-Koç Ö, Erich SJF, Huinink HP, van der Ven LGJ, Adan OCG (2017) Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose 24:535–555. https://doi.org/10.1007/s10570-016-1173-x

    Article  CAS  Google Scholar 

  • Glass SV, Boardman CR, Thybring EE, Zelinka SL (2018) Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Sci Technol 52:909. https://doi.org/10.1007/s00226-018-1007-0

    Article  CAS  Google Scholar 

  • Hameury S, Sterley M (2006) Magnetic resonance imaging of moisture distribution in Pinus sylvestris L. exposed to daily indoor relative humidity fluctuations. Wood Mat Sci Eng 1:116–126. https://doi.org/10.1080/17480270601150578

    Article  Google Scholar 

  • Hartley J, Marchant J (1995) Methods of determining the moisture content of wood. Research Division State Forests of New South Wales, Sydney, Technical paper No. 41

  • Hartley ID, Kamke FA, Peemoeller FJ (1992) Cluster theory for water sorption in wood. Wood Sci Technol 26:83–99

    Article  CAS  Google Scholar 

  • Hartley ID, Kamke FA, Peemoeller H (1994) Absolute moisture content determination of aspen wood below the fiber saturation point using pulsed NMR. Holzforschung 48:474–479. https://doi.org/10.1515/hfsg.1994.48.6.474

    Article  CAS  Google Scholar 

  • Hernandez RE, Caceres CB (2010) Magnetic resonance microimaging of liquid water distribution in sugar maple wood below fiber saturation point. Wood Fiber Sci 42:259–272

    CAS  Google Scholar 

  • Humar M, Žlahtič M, Thaler N (2014) Influence of thermal modification of Norway spruce wood on short and long term water uptake. In: The seventh European conference on wood modification, ECWM7 : Portugal, Lisbon

  • Humar M, Kržišnik D, Lesar B, Thaler N, Ugovšek A, Zupančič K, Žlahtič M (2017) Thermal modification of wax-impregnated wood to enhance its physical, mechanical, and biological properties. Holzforschung 71:57–64. https://doi.org/10.1515/hf-2016-0063

    Article  CAS  Google Scholar 

  • Isaksson T, Brischke C, Thelandersson S (2013) Development of decay performance models for outdoor timber structures. Mater Struct 46:1209–1225. https://doi.org/10.1617/s11527-012-9965-4

    Article  Google Scholar 

  • Javed MA, Kekkonen PM, Ahola S, Telkki VV (2015) Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung 69:899–907

    Article  CAS  Google Scholar 

  • Kanazawa Y, Yamada T, Kido A, Fujimoto K, Takakura K, Hayashi H, Fushimi Y, Kozawa S, Koizumi K, Okuni M, Ueda N, Togashi K (2017) Internal evaluation of impregnation treatment of waterlogged wood; relation between concentration of internal materials and relaxation time using magnetic resonance imaging. Magn Reson Imaging 38:196–201

    Article  PubMed  Google Scholar 

  • Kekkonen PM, Ylisassi A, Telkki VV (2014) Absorption of water in thermally modified pine wood as studied by nuclear magnetic resonance. J Phys Chem C 1184:2146–2153

    Article  CAS  Google Scholar 

  • Kollmann F, Coté WA (1968) Principles of wood science and technology I: solid wood. Springer, Berlin

    Book  Google Scholar 

  • Kržišnik D, Lesar B, Thaler N, Humar M (2018) Micro and material climate monitoring in wooden buildings in sub-alpine environments. Constr Build Mater 166:188–195

    Article  Google Scholar 

  • Kutnik M, Suttie E, Brischke C (2014) European standards on durability and performance of wood and wood-based products—trends and challenges. Wood Mat Sci Eng 9:122–133. https://doi.org/10.1080/17480272.2014.894574

    Article  Google Scholar 

  • Labbé N, De Jéso B, Lartigue JC, Daudé G, Pétraud M, Ratier M (2006) Time-domain 1H NMR characterization of the liquid phase in greenwood. Holzforschung 60:265–270

    Article  CAS  Google Scholar 

  • Lesar B, Gorišek Ž, Humar M (2009) Sorption properties of wood impregnated with boron compounds, sodium chloride and glucose. Dry Technol 27:94–102. https://doi.org/10.1080/07373930802565947

    Article  CAS  Google Scholar 

  • Lisbeth G, Thygesen Lundqvist S-O (2000) NIR measurement of moisture content in wood under unstable temperature conditions. Part 1. Thermal effects in near infrared spectra of wood. J Near Infrared Spectrosc 8:183–189

    Article  Google Scholar 

  • Menon RS, Mackay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS (1987) An NMR determination of the physiological water distribution in wood during drying. J Appl Polym Sci 33:1141–1155. https://doi.org/10.1002/app.1987.070330408

    Article  CAS  Google Scholar 

  • Merela M, Sepe A, Oven P, Serša I (2005) Three-dimensional in vivo magnetic resonance microscopy of beech (Fagus sylvatica L.) wood. Magn Reson Mater Phys Biol Med 18:171–174. https://doi.org/10.1007/s10334-005-0109-5

    Article  CAS  Google Scholar 

  • Merela M, Oven P, Serša I, Mikac U (2009a) A single point NMR method for an instantaneous determination of the moisture content of wood. Holzforschung 63:348–351. https://doi.org/10.1515/HF.2009.050

    Article  CAS  Google Scholar 

  • Merela M, Pelicon P, Vavpetič P, Regvar M, Vogel-Mikuš K, Serša I, Poličnik H, Pokorny B, Levanič T, Oven P (2009b) Application of micro-PIXE, MRI and light microscopy for research in wood science and dendroecology. Nucl Instrum Methods Phys Res B 267:2157–2162. https://doi.org/10.1016/j.nimb.2009.03.062

    Article  CAS  Google Scholar 

  • Meyer L, Brischke C (2015) Fungal decay at different moisture levels of selected European grown wood species. Int Biodeterior Biodegrad 103:23–29. https://doi.org/10.1016/j.ibiod.2015.04.009

    Article  Google Scholar 

  • Meyer L, Brischke C, Alfredsen G, Humar M, Flate PO, Isaksson T, Larsson PB, Westin M, Jermer J (2017) The combined effect of wetting ability and durability on outdoor performance of wood: development and verification of a new prediction approach. Wood Sci Technol 51:615–637. https://doi.org/10.1007/s00226-017-0893-x

    Article  CAS  Google Scholar 

  • Mikac U, Serša I, Zupanc MŽ, Humar M, Merela M, Oven P (2018) Application of MR microscopy for research in wood science. Microporous Mesoporous Mater 269:51–55. https://doi.org/10.1016/j.micromeso.2017.03.025

    Article  CAS  Google Scholar 

  • Militz H (2015) Wood modification in Europe in the year 2015: a success story? The eighth European conference on wood modification, Helsinki, Finland

  • Mitsui K, Inagaki T, Tsuchikawa S (2008) Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy. Biomacromolecules 9:286–288

    Article  CAS  PubMed  Google Scholar 

  • Morales S, Guesalaga A, Fernandez MP, Guarini M, Irarrazaval P (2004) Computer reconstruction of pine growth rings using MRI. Magn Reson Imaging 22:403–412

    Article  PubMed  Google Scholar 

  • Mouchot N, Thiercelin F, Perre P, Zoulalian A (2006) Characterization of diffusional transfers of bound water and water vapor in beech and spruce. Maderas. Ciencia y tecnologia 8:139–147

    CAS  Google Scholar 

  • Niemz P (2003) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag, Leinfelden-Echterdingen

    Google Scholar 

  • Niklewski J, Fredriksson M, Isaksson T (2016) Moisture content prediction of rain-exposed wood: test and evaluation of a simple numerical model for durability applications. Build Environ 97:126–136

    Article  Google Scholar 

  • Oven P, Merela M, Mikac U, Serša I (2008) 3D magnetic resonance microscopy of a wounded beech branch. Holzforschung 62:322–328. https://doi.org/10.1515/HF.2008.022

    Article  CAS  Google Scholar 

  • Oven P, Merela M, Mikac U, Serša I (2011) Application of 3D magnetic resonance microscopy to the anatomy of woody tissues. IAWA J 32:401–414

    Article  Google Scholar 

  • Passarini L, Malveau C, Hernández RE (2015) Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance microimaging. Wood Sci Technol 49:1251–1268

    Article  CAS  Google Scholar 

  • Rametsteiner E, Oberwimmer R, Gschwandtl I. (2007). Europeans and wood what do Europeans think about wood and its uses? A review of consumer and business surveys in Europe. Ministerial Conference on the Protection of Forests in Europe. Warsaw, Poland

  • Reeb JE (2009) Wood and moisture relationships. Oregon State University, Corvallis, p 7

    Google Scholar 

  • Robertson MB, Packer KJ (1999) Diffusion of D2O in archaeological wood measured by 1-D NMR profiles. Appl Magn Reson 17:49–64. https://doi.org/10.1007/bf03162068

    Article  CAS  Google Scholar 

  • Rosenkilde A, Glover P (2002) High resolution measurement of the surface layer moisture content during drying of wood using a novel magnetic resonance imaging technique. Holzforschung 56(3):312–317. https://doi.org/10.1515/HF.2002.050

    Article  CAS  Google Scholar 

  • Rowell RM, Banks WB (1985) Water repellency and dimensional stability of wood. General technical report FPL-50. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; p 24

  • Schmidt O (2006) Wood and tree fungi. Biology, damage, protection and use. Springer, Berlin

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson WT (1989) Drying wood: a review. Drying technology. Int J 2(2):235–265

    Google Scholar 

  • Simpson WT (1993) Determination and use of moisture diffusion coefficient to characterize drying of Northern red oak. Wood Sci Technol 27:409–420

    Article  CAS  Google Scholar 

  • Skaar C (1972) Water in wood. Syracuse University Press, New York, p 1972

    Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Berlin. https://doi.org/10.1007/978-3-642-73683-4

    Book  Google Scholar 

  • Tannert T, Berger R, Vogel M, Müller A (2011) Remote moisture monitoring of timber bridges: a case study. In: 5th international conference on structural health monitoring of intelligent infrastructure (SHMII-5) 11–15 December 2011, Cancún, México, p 9

  • Tarmian A, Remond R, Dashti H, Perre P (2012) Moisture diffusion coefficient of reaction wood: compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Wood Sci Technol 46:405–417

    Article  CAS  Google Scholar 

  • Thelandersson S, Larsen HL (2003) Timber engineering. Wiley, Chichester

    Google Scholar 

  • Thybring EE, Thygesen LG, Burgert I (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24:2375–2384. https://doi.org/10.1007/s10570-017-1278-x

    Article  CAS  Google Scholar 

  • Thybring EE, Kymäläinen M, Rautkari L (2018) Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Sci Technol 52(2):297–329

    Article  CAS  Google Scholar 

  • Thygesen LG, Elder T (2008) Moisture in untreated, acetylated, and furfurylated Norway spruce studied during drying using time domain NMR. Wood Fiber Sci 40:309–320

    CAS  Google Scholar 

  • Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42:43–71

    Article  CAS  Google Scholar 

  • Van den Bulcke J, Van Acker J. (2008) Time resolved analysis of the moisture dynamics of plywood. COST action E37 final conference in Bordeaux, socio-economic perspectives of treated wood for the common European market, pp 65–75

  • Vidal M, Cloutier A (2005) Evolution of sorption models for high temperature. Maderas Ciencia tecnologia 7:145–158

    Google Scholar 

  • Wang P, Chang SJ (1986) Nuclear magnetic resonance imaging of wood. Wood Fiber Sci 18:308–314

    Google Scholar 

  • Weise U, Maloney T, Paulapuro H (1996) Quantification of water in different states of interaction with wood pulp fibres. Cellulose 3:189–202

    Article  Google Scholar 

  • Yao Y, Gellerich A, Zauner M, Wang X, Zhang K (2018) Differential anti-fungal effects from hydrophobic and superhydrophobic wood based on cellulose and glycerol stearoyl esters. Cellulose 25:1329–1338. https://doi.org/10.1007/s10570-017-1626-x

    Article  CAS  Google Scholar 

  • Yuniarti K, Brodie G, Ozarska B, Harris G, Waugh G (2018) A mathematical model for moisture movement during continuous and intermittent drying of Eucalyptus saligna. Eur J Wood Wood Prod 76:1165–1172

    Article  Google Scholar 

  • Žlahtič M, Thaler N, Humar M (2015) Water uptake of thermally modified Norway spruce = Upijanje vode toplinski modificirane norveške smreke. Drvna industrija 66:273–279. https://doi.org/10.5552/drind.2015.1421

    Article  Google Scholar 

  • Žlahtič M, Mikac U, Serša I, Merela M, Humar M (2017) Distribution and penetration of tung oil in wood studied by magnetic resonance microscopy. Ind Crops Prod 96:149–157. https://doi.org/10.1016/j.indcrop.2016.11.049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Slovenian Research Agency within the framework of project L4-5517, L4-7547, program P4-0015 and the infrastructural centre (IC LES PST 0481-09). Part of the research was also supported by the project Tigr4smart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miha Humar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žlahtič Zupanc, M., Mikac, U., Serša, I. et al. Water distribution in wood after short term wetting. Cellulose 26, 703–721 (2019). https://doi.org/10.1007/s10570-018-2102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2102-y

Keywords

Navigation