Skip to main content
Log in

Mass diffusivity of different species of wood in convective drying

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This study is devoted to the determination of the diffusion coefficient in convective drying of four local wood species: Aleppo pine, Stone pine, Zeen oak and date palm. A numerical method based on a diffusive model is used which consists of three complementary steps: experimentation, analysis of experimental data and minimization of the gap between experimental drying kinetics data and calculated ones. The coefficient of water for the four wood species is considered depending on both temperature and moisture content, and is obtained by the numerical solution of the conservation equation of the solid phase and the water transfer equation coupled to the shrinkage rate of the solid phase. The found values of diffusion coefficient are consistent with the range of variation in the literature. The mass diffusion coefficient varies with increase in temperature between 1.510−11 and 4.10−11 (m2/s) for the Aleppo pine, Stone pine and Zeen oak woods, however for the “palm wood”, it varies from 10 to 11 to 6.10−11 (m2/s). Arrhenius type relationship allows determining the activation energy, which varies between 135.64 and 150.49 (kJ/mol) for all species of wood treated, and these values are comparable with those of other species cited in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

aw :

Water activity (%)

C:

Concentration (kg m−3)

D:

Moisture diffusivity (m2/s)

D0 :

Arrhenius factor (m2/s)

db:

Dry solid

Ea :

Activation energy (kJ/mol)

HR:

Relative humidity (%)

Km:

Mass transfer coefficient (m s−1)

L:

Length of the sample (mm)

T:

Tangential of the sample (mm)

Mv :

Vapor molar mass (kg/mol)

m:

Mass (kg)

P:

Pressure (Pa)

Q:

Heat (J)

r:

Radial of the sample (mm)

R:

Ideal gas constant (J mol−1 k−1)

Re:

Reynolds number

Rv:

Volumetric shrinkage coefficient (%)

t:

Time (s)

T:

Temperature (°C, K)

Sc:

Schmidt number

u:

Speed (m s−1)

V:

Volume (m3)

X:

Moisture content (kg water/kg ds)

\(\mu ~\) :

Dynamic viscosity (kg m−1 s−1)

\(\beta\) :

Coefficient of shrinkage

\(\lambda\) :

Thermal conductivity (W m K−1)

\({{\uprho}}\) :

Density (kg m−3)

0:

Initial

a:

Air

l:

Liquid

s:

Solid

evap:

Evaporation

conv:

Convective

cal:

Calculated

eq:

Equilibrium

exp:

Experimental

surf:

Surface

FSP:

Fiber Saturation Point

References

  • Agoua E, Zohoun S, Perre P (2001) A double climatic chamber used to measure the diffusion coefficient of water in wood in unsteady-state conditions: determination of the best fitting method by numerical simulation. Int J Heat Mass Transf 44:3731–3744

    Article  CAS  Google Scholar 

  • Aicher S, Stapf G (2016) Compressive strength parallel to the fiber of spruce with high moisture content. Eur J Wood Prod 74(4):527–542

    Article  CAS  Google Scholar 

  • ASTM (2000) ASTM D-143-94 Standard test methods for small clear specimens of timber. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  • Azzouz S, Guizani A, Jomaa W, Belghith A (2002) Moisture diffusivity and drying kinetic equation of convective drying of grapes. J Food Eng 55:323–330

    Article  Google Scholar 

  • Biak OD, Murcotte M (2003) Modeling the moisture diffusivity in a baking cake. J Food Eng 56:27–36

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2th edn. Wiley, New Jersey

    Google Scholar 

  • Bizot H (1983) Using the GAB model to construct sorption isotherms. In: Jowitt R, Escher F, Hallström B, Meffert HF, Spiess WEL, Vos G (eds) Physical properties of foods. Applied Science, New York, pp 43–53

  • Chen Y, Choong ET, Weizel DM (1999) A numerical analysis technique to evaluate the moisture dependent diffusion coefficient on moisture movement during drying. Wood Fiber Sci 28:338–345

    Google Scholar 

  • Elaieb MT, Khaldi A, Candeller K (2015) Impact of location and forestry conditions on some physical and mechanical properties of northern Tunisian Pinus pinea L. wood. Bois et forêts des tropiques 324(2):65–74

  • Ernesto U Jr, Ottaviano A, Nasko T, Ove S (2010) Application of non symmetrical drying tests for assessment ofdryingbehaviour of ntholo (PseudolachnostylismaprounaefoliaPAX). Holzforschung 64(3):363–368

    Google Scholar 

  • Hassini L, Azzouz S, Peczalski R, Belghith A (2007) Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. J Food Eng 39:47–56

    Article  Google Scholar 

  • Hunter AJ (1993) On movement of water through wood—the diffusion coefficient. Wood Sci Technol 27:401–408

    Article  CAS  Google Scholar 

  • Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 7th edn. Wiley, New Jersey

    Google Scholar 

  • Karathanos VT, Villalobos G, Saravacos GD (1990) Comparison of two methods of estimation of the effective moisture diffusivity from drying data. J Food Eng 55:218–231

    Google Scholar 

  • Ketelaars AJ (1992) Drying deformable media. Ph D thesis, University of Technology, The Netherlands

  • Kim SS, Bhowmik SR (1995) Effective moisture diffusivity of plain yogurt undergoing microwave vacuum drying. J Food Eng 24:137–148

    Article  Google Scholar 

  • Kumar RR, Kolar AK, Leckner B (2006) Shrinkage characteristics of Casuarina wood during devolatilization in a fluidized bed combustor. Biomass Bioenergy 30:153–165

    Article  Google Scholar 

  • Lartigue C (1987) Les Mécanismes Elémentaires mis en jeu lors du Séchage du Pin Maritime (The Elementary Mechanisms involved during the drying of the maritime pine) (in French). PhD thesis, Bordeaux University

  • Moyne C (1997) Two-equation model for a diffusive process in porous media using the volume averaging method with an unsteady-state closure. Adv Water Resour 20:63–76

    Article  Google Scholar 

  • Nadeau JP, Puiggali JR (1995) Séchage des Processus Physiques aux Procédé Industriels (Drying: from physical processes to industrial processes) (in French), Ed. Lavoisier Tech. Doc, Paris

    Google Scholar 

  • Ouertani S, Azzouz S, Hassini L, Belghith A (2011) Palmwood drying and optimization of the processing parameters. Wood Mater Sci Eng 6(1):75–90

    Article  CAS  Google Scholar 

  • Panagiotou NM, Krokida MK, Maroulis ZB, Saravacos GD (2004) Moisture diffusivity: literature data compilation for foodstuffs. Int J Food Prop 7(2):273–299

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing, New York

    Google Scholar 

  • Simpson WT (1993) Determination and use of moisture diffusion coefficient to characterize drying of northern red oak. J Wood Sci Technol 27:409–420

    Article  CAS  Google Scholar 

  • Themelin A (1998) Sorption behavior of ligno-cellulosic products (Comportement en sorption de produits ligno-cellulosiques) (in French). Bois et Forêts des tropiques 256(2):55–57

    Google Scholar 

  • Wiesław O, Perré P, Weres J (2005) Inverse analysis of the transient bound water diffusion in wood. Holzforschung 59(1):38–45

    Google Scholar 

  • Zogzas NP, Maroulis ZB (1996) Effective Moisture diffusivity estimation from drying data—a comparison between various methods of analysis. Dry Technol 14(7/8):1543–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

My sincere and heartfelt thanks to Professor Guizani AmenAllah, to the researcher Ben Makhlouf Naima and to the technician Zaaraoui Abdelrazek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Azzouz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzouz, S., Ben Dhib, K., Bahar, R. et al. Mass diffusivity of different species of wood in convective drying. Eur. J. Wood Prod. 76, 573–582 (2018). https://doi.org/10.1007/s00107-017-1212-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-017-1212-9

Navigation