Skip to main content
Log in

Diffusion of D2O in archaeological wood measured by 1-D NMR profiles

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

1-D1H nuclear magnetic resonance profiles have been used to image the penetration of D2O into waterlogged archaeological wood. A series of well characterised plugs were sampled from different depths, reflecting different degrees of degradation and orientation with respect to the wood structure, of an oak timber from the Mary Rose. The ingress of D2O was Fickian in character and the diffusion coefficients,D, are reported as a function of depth into the timber for each orientation. The behaviour ofD could be approximated by a surface layer, with a higher diffusion coefficient, and a lower diffusion core region. The differences in the values ofD in the different orientations are rationalised in terms of the known structure of decayed wood. Theoretical uptake curves were calculated from a numerical evaluation of the analytical solution for diffusion into a multiple-layer model. Saturation of the surface layer was predicted to occur prior to diffusion into the core, with a characteristic change of gradient displayed in the uptake curve. Good agreement was achieved with experiments that sampled the different decay environments. Concentration distributions, and uptake curves, were calculated using these models for a typical archaeological timber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grattan D.W., Clarke R.W.: Conservation of Marine Archaeological Objects (Pearson C., ed.), chap. 9. London: Butterworths 1987.

    Google Scholar 

  2. Barbour R.J.: Archaeological Wood: Properties, Chemistry, and Preservation (Rowell R.M., Barbour R.J., eds.), chap. 7. Washington: American Chemical Society 1990.

    Google Scholar 

  3. Christensen G.N., Williams E.J.: Aust. J. Appl. Sci.2, 411 (1951)

    Google Scholar 

  4. Christensen G.N.: Aust. J. Appl. Sci.2, 430 (1951)

    Google Scholar 

  5. Baines E.F., Levy J.F.: J. Inst. Wood Sci.8, 109 (1979)

    Google Scholar 

  6. Grattan D.W.: Conservation of Marine Archaeological Objects (Pearson C., ed.), chap. 3. London: Butterworths 1987.

    Google Scholar 

  7. Hoffmann P., Jones M.A.: Archaeological Wood: Properties Chemistry and Preservation (Rowell R.M., Barbour R.J., eds.), chap. 2. Washington: American Chemical Society 1990.

    Google Scholar 

  8. Wison A.T., Chang C.T.P.: Prog. Nucl. Magn. Reson. Spectrosc.31, 343 (1997)

    Article  Google Scholar 

  9. Stilbs P.: Prog. Nucl. Magn. Reson. Spectrosc.19, 1 (1987)

    Article  Google Scholar 

  10. Karger J., Pfeifer H., Heink W.: Adv. Magn. Reson.12, 1 (1988)

    Google Scholar 

  11. McDonald P.J., Pritchard T., Roberts S.P.: J. Colloid Interface Sci.177, 439 (1996)

    Article  Google Scholar 

  12. Hughes P.D.M., McDonald P.J., Rhodes N.P., Rockcliffe J.W., Smith E.G., Wills J.: J. Colloid Interface Sci.177, 208 (1996)

    Article  Google Scholar 

  13. Jane F.W.: The Structure of Wood, 2nd edn. London: A. & C. Black 1970.

    Google Scholar 

  14. Meylan B.A., Butterfield B.G.: Three Dimensional Structure of Wood: a Scanning Electron Microscope Study. London: Chapman & Hall 1972.

    Google Scholar 

  15. Butterfield B.G., Meylan B.A.: Three Dimensional Structure of Wood: an Ultrastructural Approach. London: Chapman & Hall 1980.

    Google Scholar 

  16. Crank J.: The Mathematics of Diffusion, 2nd edn., chap. 4. Oxford: Oxford University Press 1975.

    Google Scholar 

  17. Robertson M.B., Ward I.M., Klein P.G., Packer K.J.: Macromolecules30, 6893 (1997)

    Article  ADS  Google Scholar 

  18. Mills R.: J. Phys. Chem.77, 685 (1973)

    Article  Google Scholar 

  19. Barrie J.A., Levine J.D., Michaels A.S., Wong P.: Trans. Faraday Soc.59, 869 (1963)

    Article  Google Scholar 

  20. Ash R., Baker R., Petropopoulos J.H.: Br. J. Appl. Phys.16, 854 (1963)

    Article  ADS  Google Scholar 

  21. Ash R., Barrer R.M., Palmer D.G.: Br. J. Appl. Phys.16, 873 (1965)

    Article  ADS  Google Scholar 

  22. Tittle C.W.: J. Appl. Phys.36, 1486 (1965)

    Article  MATH  ADS  Google Scholar 

  23. Ozisik M.N.: Boundary Value Problems of Heat Conduction, 2nd edn., chap. 6. New York: Wiley 1993.

    Google Scholar 

  24. Fukuda M., Kawai H.: Polym. Eng. Sci.34, 330 (1994)

    Article  Google Scholar 

  25. Fukuda M., Kawai H.: Polym. Eng. Sci.35, 709 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, M.B., Packer, K.J. Diffusion of D2O in archaeological wood measured by 1-D NMR profiles. Appl. Magn. Reson. 17, 49–64 (1999). https://doi.org/10.1007/BF03162068

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162068

Keywords

Navigation