Skip to main content
Log in

Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocellulose with a morphology ranging from long flexible to rod-like fibrils were produced via periodate oxidation route followed by reductive treatment with NaBH4 of never-dried eucalyptus pulp. The effect of the aldehyde content on the size and morphology of the resulting nanocellulose was studied by preparing three samples with 450, 830 and 1480 µmol g−1 aldehyde content. The change in particle size after the oxidation and reduction was monitored by dynamic light scattering and the morphology of the nanocellulose was characterized by transmission electron microscopy. It was shown that the length of the cellulose fibrils significantly decreased with increasing oxidation. Depending on the aldehyde content, elementary nanofibrils or bundles of nanofibrils with a length from 100 nm up to several µm were obtained after the reduction process. The reinforcing potential of the nanocellulose was also investigated by dynamic thermomechanical analysis of nanocomposite films with different nanocellulose contents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  • Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20:1765–1775

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99–107

    Article  CAS  Google Scholar 

  • Chavan VB, Sarwade BD, Varma AJ (2002) Morphology of cellulose and oxidised cellulose in powder form. Carbohydr Polym 50:41–45

    Article  CAS  Google Scholar 

  • Chen D, van de Ven TGM (2016) Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation. Cellulose 23:1051–1059

    Article  CAS  Google Scholar 

  • Guigo N, Mazeau K, Putaux J-L, Heux L (2014) Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21:4119–4133

    Article  CAS  Google Scholar 

  • Hietala M, Ammälä A, Silvennoinen J, Liimatainen H (2016) Fluting medium strengthened by periodate–chlorite oxidized nanofibrillated celluloses. Cellulose 23:427–437

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492

    Article  CAS  PubMed  Google Scholar 

  • Larsson PA, Berglund LA, Wågberg L (2014) Ductile all-cellulose nanocomposite films fabricated from core–shell structured cellulose nanofibrils. Biomacromolecules 15:2218–2223

    Article  CAS  PubMed  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö JA, Hormi O, Niinimäki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  PubMed  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö JA, Hormi O, Niinimäki J (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J59:302–325

    Article  CAS  Google Scholar 

  • Lu F-F, Yu H-Y, Zhou Y, Yao J-M (2016) Spherical and rod-like dialdehyde cellulose nanocrystals by sodium periodate oxidation: optimization with double response surface model and templates for silver nanoparticles. Express Polym Lett 10:965–976

    Article  CAS  Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  • Nieduszynski I, Preston RD (1970) Crystallite size in natural cellulose. Nature 225:273–274

    Article  CAS  Google Scholar 

  • Princi VE, Luciano G, Franceschi E, Pedemonte E, Oldak D, Kaczmarek H, Sionkowska A (2004) Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate. Thermochim Acta 418:123–130

    Article  CAS  Google Scholar 

  • Ranby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sirviö JA, Visanko M, Laitinen O, Ämmälä A, Liimatainen H (2016) Amino-modified cellulose nanocrystals with adjustablehydrophobicity from combined regioselective oxidation and reductive amination. Carbohydr Polym 136:581–587

    Article  CAS  PubMed  Google Scholar 

  • van de Ven TGM, Sheikhi A (2016) Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8:15101–15114

    Article  CAS  PubMed  Google Scholar 

  • Vikman M, Vartiainen J, Tsitko I, Korhonen P (2015) Biodegradability and compostability of nanofibrillar cellulose-based products. J Polym Environ 23:206–215

    Article  CAS  Google Scholar 

  • Visanko M, Liimatainen H, Antti Sirvio J, Mikkonen KS, Tenkanen M, Sliz R, Hormie O, Niinimaki J (2015) Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength. RSC Adv 5:15140–15146

    Article  CAS  Google Scholar 

  • Yang H, Tejado A, Alam MN, Antal M, van de Ven TGM (2012) Films prepared fromelectrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Laboratoire Rhéologie et Procédés is part of the LabEx Tec 21 (Investissements d’Avenir: Grant Agreement No. ANR-11-LABX-0030) and of Institut Carnot PolyNat (Investissements d’Avenir: Grant Agreement No. ANR-11-CARN-030-01). This work was supported by the LabEx Tec 21 (Investissements d’Avenir: Grant Agreement No. ANR-11-LABX-0030). The authors thank the NanoBio-ICMG Platform (FR 2607, Grenoble) for granting access to the Electron Microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Boufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errokh, A., Magnin, A., Putaux, JL. et al. Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose 25, 3899–3911 (2018). https://doi.org/10.1007/s10570-018-1871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1871-7

Keywords

Navigation