Skip to main content
Log in

Cellulose nanocrystals modified with a triazine derivative and their reinforcement of poly(lactic acid)-based bionanocomposites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In order to improve the thermal stability of cellulose nanocrystals (CNCs) and to weaken their hydrophilicity, extensive research has been conducted to graft hydrophobic molecular chains on CNC surfaces to cover and/or replace hydroxyl and sulfate ester groups. According to our previous research, it was proposed that triazine derivative is an ideal candidate to modify CNCs. In this study, triazine derivative-grafted CNCs were synthesized and incorporated into poly(lactic acid) (PLA) nanocomposites as a reinforcing filler. The synthesis of triazine derivative was confirmed by FT-IR and the characterization of modified CNCs was determined by TEM, FT-IR,13C NMR, EDX, TGA and contact angle measurements. It was found that the triazine derivative was successfully grafted onto the CNC surfaces. The thermal stability of the modified CNCs was improved, and hydrophobic CNCs were obtained. Moreover, the properties of CNC/PLA composites were investigated by SEM, UV–Vis spectrophotometer and DSC, and the mechanical properties of composites were measured. The compatability of the modified CNCs with the PLA matrix was improved, and the mechanical properties of PLA composites were improved without serious destruction of their transmittance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016) Highly modified cellulose nanocrystals and formation of epoxy-CNC nanocomposites. ACS Appl Mater Interfaces 8:28086–28095

    Article  CAS  Google Scholar 

  • Araki J, Masahisa Wada A, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117:357–363

    Article  CAS  Google Scholar 

  • Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2015) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310

    Article  CAS  Google Scholar 

  • Bhat HR et al (2016) Synthesis, characterization and antimalarial activity of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Arab J Chem 9:S625–S631

    Article  CAS  Google Scholar 

  • Boujemaoui A, Mazières S, Malmström E, Destarac M, Carlmark A (2016) SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polymer 99:240–249

    Article  CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal U, Zhu J (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concetrated acid hydrolysis. Cellulose 22(3):1753–1762

    Article  CAS  Google Scholar 

  • de Castro DO, Bras J, Gandini A, Belgacem N (2016) Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 137:1–8

    Article  Google Scholar 

  • Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87

    Article  CAS  Google Scholar 

  • Farahbakhsh N, Shahbeigi-Roodposhti P, Sadeghifar H, Venditti RA, Jur JS (2017) Effect of isolation method on reinforcing capability of recycled cotton nanomaterials in thermoplastic polymers. J Mater Sci 52:4997–5013

    Article  CAS  Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromol 9:1974–1980

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hambardzumyan A et al (2015) Organosolv lignin as natural grafting additive to improve the water resistance of films using cellulose nanocrystals. Chem Eng J 264:780–788

    Article  CAS  Google Scholar 

  • Hatton FL, Kedzior SA, Cranston ED, Carlmark A (2016) Grafting-from cellulose nanocrystals via photoinduced cu-mediated reversible-deactivation radical polymerization. Carbohydr Polym 157:1033–1040

    Article  Google Scholar 

  • Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166

    Article  CAS  Google Scholar 

  • Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034–2037

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    Article  CAS  Google Scholar 

  • Liu Y, Li Y, Yang G, Zheng X, Zhou S (2015) Multi-stimuli-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces 7:4118–4126

    Article  CAS  Google Scholar 

  • Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265

    Article  CAS  Google Scholar 

  • Lizundia E et al (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113

    Article  CAS  Google Scholar 

  • Mangalam AP, Simonsen J, Benight AS (2009) Cellulose/DNA hybrid nanomaterials. Biomacromol 10:497–504

    Article  CAS  Google Scholar 

  • Morandi G, Thielemans W (2012) Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP. Polym Chem 3:1402–1407

    Article  CAS  Google Scholar 

  • Morelli CL, Belgacem MN, Branciforti MC, Marie CBS, Bras J, Bretas RES (2016) Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polym Eng Sci 56:1339–1348

    Article  CAS  Google Scholar 

  • Namazi H, Adeli M (2005) Synthesis of barbell-like triblock copolymers, dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors. Polymer 46:10788–10799

    Article  CAS  Google Scholar 

  • Ooyama Y, Uenaka K, Ohshita J (2015) Synthesis, optical, electrochemical and photovoltaic properties of a D-π-A fluorescent dye with triazine ring as electron-withdrawing anchoring group for dye-sensitized solar cells. RSC Adv 5:21012–21018

    Article  CAS  Google Scholar 

  • Pearlman WM, Banks CK (1948) Substituted Chlorodiamino-s-triazines1. J Am Chem Soc 70:3726–3728

    Article  CAS  Google Scholar 

  • Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  • Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677

    Article  CAS  Google Scholar 

  • Sasatsu M, Onishi H, Machida Y (2006) In vitro and in vivo characterization of nanoparticles made of MeO-PEG amine/PLA block copolymer and PLA. Int J Pharm 317:167–174

    Article  CAS  Google Scholar 

  • Solankee A, Tailor R (2015) An efficient synthesis and antimicrobial evaluation of some new pyrazoline, pyrimidine and benzodiazepine derivatives bearing 1,3,5-triazine core. Int Lett Chem Phys Astron 57:13–24

    Article  Google Scholar 

  • Sun B, Zhang M, Hou Q, Liu R, Wu T, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111

    Article  CAS  Google Scholar 

  • Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53:11007–11014

    Article  CAS  Google Scholar 

  • Wang H, He J, Zhang M, Tam KC, Ni P (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209

    Article  CAS  Google Scholar 

  • Wang Z, Jiang J, Si Y, Fan Y (2017) Effect of cellulose nanobifers on the property of cellulose nanofiber/polyvinyl alcohol composite film. Trans China Pulp Pap 32:27–31

    Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412

    Article  CAS  Google Scholar 

  • Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212

    Article  CAS  Google Scholar 

  • Yin Y, Hong Z, Tian X, Zhu Q, Jiang X, Wang H, Gao W (2017a) Cellulose nanocrystals modified with quaternary ammonium salts and its reinforcement of polystyrene. Polym Bull. https://doi.org/10.1007/s00289-017-2131-y

    Google Scholar 

  • Yin Y, Tian X, Weng F, Jiang X, Wang H, Gao W (2017b) Synthesis of 2,4-bis(4-sulfonate phenoxy)-6-chloro-1,3,5 triazine and its application in modification of cellulose for high glucose yield. Cellul Chem Technol 51:731–736

    CAS  Google Scholar 

  • Yin Y, Zhao L, Jiang X, Wang H, Gao W (2017c) Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose 24:4773–4784

    Article  CAS  Google Scholar 

  • Yin Y, Zhao L, Jiang X, Wang H, Gao W (2017d) Synthesis of triazine derivative and its application in the modification of cellulose nanocrystals. BioResources 12(4):7427–7438

    CAS  Google Scholar 

  • Yoon KR, Kim Y, Choi IS (2005) Mechanistic study on Sn(Oct)2-catalyzed, ring-opening polymerization of p-dioxanone by surface-initiated polymerization and x-ray photoelectron spectroscopy. J Polym Res 11:265–268

    Article  Google Scholar 

  • Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 49:463–471

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 31570578 and 31270632), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51622A), and the Graduate Student Innovation Plan of the Jiangsu Province of China (KYLX16_0790).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Jiang or Hongbo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Zhao, L., Jiang, X. et al. Cellulose nanocrystals modified with a triazine derivative and their reinforcement of poly(lactic acid)-based bionanocomposites. Cellulose 25, 2965–2976 (2018). https://doi.org/10.1007/s10570-018-1741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1741-3

Keywords

Navigation