Skip to main content
Log in

Substrate role in coating of microfibrillated cellulose suspensions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Interest in nanocellulose-based coatings for packaging applications has been growing due to their excellent oil and gas barrier properties combined with their sustainable, recyclable, biodegradable, and non-toxic nature. Coating of nanocellulose materials such as microfibrillated cellulose (MFC) on paper/paperboard is challenging compared to traditional paper coating materials due to excessively high viscosity and yield stress of MFC suspensions at rather low solids content, typically below 5%. Possessing large amounts of water and a distinct rheological behavior such suspensions set tough demands on the substrate to be coated. It is important to understand and quantify substrate requirements in order to coat these suspensions successfully and achieve a satisfactory coating quality. A custom-built slot geometry is used herein to enable coating of highly viscous MFC suspensions on different paper-based substrates in a roll-to-roll process. The impact of substrate properties, such as surface chemistry and surface energy, surface roughness and surface porosity, and water absorption capacity on MFC coatability and coating quality is reported. Coating adhesion to the substrate was quantified with surface strength testing of MFC coated substrates. Various techniques, such as Scanning Electron Microscopy, IGT print penetration tests, and air permeability tests were employed for measuring coating coverage and surface porosity. MFC coating was found to adhere best to a highly hydrophilic surface, whereas the most uniform and defect-free film at low coat weights was formed on a smooth surface. It was also found that the MFC coat weight needed for full coverage, and therefore potentially good barrier, needs to exceed the surface roughness volume of the substrate. Water absorption capacity of the substrate also determines the final MFC coating quality obtained. The results clearly highlight the role of paper-based substrate for successful and effective coating of the micro and nanocellulose suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. doi:10.1016/j.copbio.2016.01.002

    Article  CAS  Google Scholar 

  • Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:1–14. doi:10.1007/s10570-015-0846-1

    Article  Google Scholar 

  • Aspler J, Bouchard J, Hamad W, Berry R, Beck S, Drolet F, Zou X (2013) Review of nanocellulosic products and their applications. In: Dufresne A, Thomas S, Pothen LA (eds) Biopolymer nanocomposites: processing, properties, and applications, 1st edn. Wiley, Hoboken, pp 461–508

    Chapter  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574. doi:10.1007/s10570-009-9393-y

    Article  CAS  Google Scholar 

  • Azeredo HMC, Rosa MF, Mattoso LHC (2016) Nanocellulose in bio-based food packaging applications. Ind Crops Prod In press. doi:10.1016/j.indcrop.2016.03.013

    Google Scholar 

  • Bardet R, Bras J (2014) Cellulose nanofibers and their use in paper industry. In: Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M (eds) Handbook of green materials: processing technologies, properties and applications, 1st edn. World Scientific Publishing Company, New Jersey, pp 207–232

    Chapter  Google Scholar 

  • Beneventi D, Chaussy D, Curtil D, Zolin L, Gerbaldi C, Penazzi N (2014) Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates. Ind Eng Chem Res 53:10982–10989

    Article  CAS  Google Scholar 

  • Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—A review. Nord Pulp Pap Res J 29:156–166. doi:10.3183/NPPRJ-2014-29-01-p156-166

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Syverud K (2012) On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Res Lett 7:1–6. doi:10.1186/1556-276X-7-192

    Article  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. doi:10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir My Ahmed, Azizi Said (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. doi:10.1163/156856108X295509

    Article  CAS  Google Scholar 

  • Haavisto S, Salmela J, Jäsberg A, Saarinen T, Karppinen A, Koponen A (2015) Rheological characterization of microfibrillated cellulose suspension using optical coherence tomography. Tappi J 14:291–302

    CAS  Google Scholar 

  • Habibi Y, Lucia LA (2012) Nanocelluloses: emerging building blocks for renewable materials. In: Habibi Y, Lucia LA (eds) Polysaccharide building blocks: a sustainable approach to the development of renewable biomaterials, 1st edn. Wiley, Hoboken, pp 105–125

    Chapter  Google Scholar 

  • Hamada H, Bousfield DW (2010) Nano-fibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets In: TAPPI 11th advanced coating fundamentals symposium, TAPPI

  • Hamada H, Mitsuhashi M (2016) Effect of cellulose nanofibers as a coating agent for woven and nonwoven fabrics. Nord Pulp Pap Res J 31:255–260. doi:10.3183/NPPRJ-2016-31-02-p255-260

    Article  CAS  Google Scholar 

  • Hamada H, Beckvermit J, Bousfield DW (2010) Nanofibrillated cellulose with fine clay as a coating agent to improve print quality In TAPPI Papercon conference, TAPPI

  • Hamada H, Tahara K, Bousfield DW.(2012) The effetcs of nano-fibrillated cellulose as a coating agent for screen printing, TAPPI advanced coating fundamentals symposium, TAPPI

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hult E, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17:575–586. doi:10.1007/s10570-010-9408-8

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459. doi:10.1007/s10086-013-1365-z

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174. doi:10.1080/10408398.2011.578765

    Article  CAS  Google Scholar 

  • Kinnunen-Raudaskoski K, Hjelt T, Kenttä E, Forsström U (2014) Thin coatings for paper by foam coating. Tappi J 13:9–19

    CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Kumar V, Bollström R, Yang A, Chen Q, Chen G, Salminen P, Bousfield D, Toivakka M (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456. doi:10.1007/s10570-014-0357-5

    Article  CAS  Google Scholar 

  • Kumar V, Elfving A, Koivula H, Bousfield D, Toivakka M (2016a) Roll-to-roll processed cellulose nanofiber coatings. Ind Eng Chem Res 55:3603–3613. doi:10.1021/acs.iecr.6b00417

    Article  CAS  Google Scholar 

  • Kumar V, Nazari B, Bousfield DW, Toivakka M (2016b) Rheology of microfibrillated cellulose suspensions in pressure-driven Flow. Appl Rheol 26:43534. doi:10.3933/APPLRHEOL-26-43534

    Google Scholar 

  • Lamberstam P (2012) Nanocellulose based films: improved mechanical and gas barrier properties Master’s thesis, School of Information and Communication Technology (ICT), KTH Royal Institute of Technology, Stockholm, Sweden

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  • Lavoine N, Bras J, Desloges I (2014a) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci 131:40106. doi:10.1002/app.40106

    Article  Google Scholar 

  • Lavoine N, Desloges I, Khelifi B, Bras J (2014b) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J Mater Sci 49:2879–2893. doi:10.1007/s10853-013-7995-0

    Article  CAS  Google Scholar 

  • Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508. doi:10.1002/pts.2121

    Article  Google Scholar 

  • Lindström T, Naderi A, Wiberg A (2015) Large scale applications of nanocellulosic materials-a comprehensive review. J Korea Tech Assoc Pulp Pap Ind 47:5–21. doi:10.7584/ktappi.2015.47.6.005

    Article  Google Scholar 

  • Luu WT, Bousfield DW, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing, TAPPI Paper Conference and Trade Show, TAPPI Press

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T (2015) Rheological measurements on nanofibrillated cellulose systems: a science in progress. In: Mondal MIH (ed) Cellulose and cellulose derivatives: synthesis, modification and applications, 1st edn. Nova Science Publishers Inc, New York, USA, pp 187–202

    Google Scholar 

  • Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2:23. doi:10.1186/s40508-014-0023-0

    Article  Google Scholar 

  • Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159

    Article  CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P (2015) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose:1-31. doi: 10.1007/s10570-015-0798-5

  • Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647. doi:10.1021/am401046x

    Article  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Paunonen S (2013) Nanocellulose-based food packaging materials—a review. Nord Pulp Pap Res J 28:165–181. doi:10.3183/NPPRJ-2013-28-02-p165-181

    Article  CAS  Google Scholar 

  • Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29:105–118. doi:10.3183/NPPRJ-2014-29-01-p105-118

    Article  CAS  Google Scholar 

  • Rastogi VK, Samyn P (2015) Bio-based coatings for paper applications. Coatings 5:887–930. doi:10.3390/coatings5040887

    Article  CAS  Google Scholar 

  • Richmond F (2014) Cellulose nanofibers use in coated papers, Ph.D. Thesis, The University of Maine, Orono, USA

  • Ridgway CJ, Gane PA (2012) Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19:547–560. doi:10.1007/s10570-011-9634-8

    Article  CAS  Google Scholar 

  • Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø, Fukuzumi H, Isogai A (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19:705–711. doi:10.1007/s10570-012-9664-x

    Article  CAS  Google Scholar 

  • Rodríguez MH (2015) Preparation and characterization of nanocellulose films and coatings from industrial bio-residues, Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden

  • Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.1021/bm060154s

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Song H, Anderfors M, Hoc M, Llindström T (2010) Reduction of the linting and dusting propensity of newspaper using starch and microfibrillated cellulose. Nord Pulp Pap Res J 25:495–504. doi:10.3183/NPPRJ-2010-25-04-p495-504

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85. doi:10.1007/s10570-008-9244-2

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Symp. 37:815–823

    CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795. doi:10.1021/la702481v

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely express their gratitude to all those involved in successful completion of this work. Special thanks to Mukunda Adhikari for assistance during coating experiments. We also express our gratitude towards the Paper and Fiber research Institute (PFI), Norway and the Norwegian University of Science and Technology (NTNU), Trondheim, for providing us with the NFC material. Special appreciation is extended to Omya, Switzerland; CP Kelco, Finland; and CH Polymers, Finland for kindly providing the pigments (Hydrocarb 60 and Hydrocarb 90), CMC (Finnfix 10 and Finnfix 4000 G) and Latex (CHP 585), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Koppolu, V.R., Bousfield, D. et al. Substrate role in coating of microfibrillated cellulose suspensions. Cellulose 24, 1247–1260 (2017). https://doi.org/10.1007/s10570-017-1201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1201-5

Keywords

Navigation