Skip to main content
Log in

Optimization of the process of chemical hydrolysis of cellulose to glucose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We studied the acid hydrolysis of cellulose in an aqueous medium with the aim of maximizing glucose yield and minimizing the formation of by-products. The influence of reaction parameters such as temperature, acid concentration, acid strength and type of cellulose precursor on glucose yield was investigated. We observed that moderate reaction temperature and low acid concentration resulted in the highest glucose yield with little formation of levulinic acid. Strong acid (pKa < 0) is required to achieve high glucose yield. The crystallite size of the cellulose also affects its reactivity; cellulose with higher crystallite size is more resistant to hydrolysis catalyzed by acid. The highest selectivity for glucose over levulinic acid was recorded at a reaction temperature of 413 K and a sulfuric acid concentration in the range of 0.2–0.5 mol/L. Under these reaction conditions, no levulinic acid was detected, but the glucose yield reached 20 % in only 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493

    Article  CAS  Google Scholar 

  • Alonso DM, Gallo JMR, Mellmer MA, Wettstein SG, Dumesic JA (2013) Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal Sci Tech 3(4):927

    Article  CAS  Google Scholar 

  • Amarasekara AS, Wiredu B (2012) Aryl sulfonic acid catalyzed hydrolysis of cellulose in water. Appl Catal A 417–418:259–262

    Article  Google Scholar 

  • Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15(3):550

    Article  CAS  Google Scholar 

  • El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84(3):865–871

    Article  CAS  Google Scholar 

  • French A, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20(1):583–588

    Article  CAS  Google Scholar 

  • Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Tech 1(5):714

    Article  Google Scholar 

  • Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46(6):1696–1708

    Article  CAS  Google Scholar 

  • Girisuta B, Dussan K, Haverty D, Leahy JJ, Hayes MHB (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70

    Article  CAS  Google Scholar 

  • Gurgel LVA, Marabezi K, Zanbom MD, Curvelo AAdS (2011) Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Ind Eng Chem Res 51(3):1173–1185

    Article  Google Scholar 

  • Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21

    Article  CAS  Google Scholar 

  • Kupiainen L, Ahola J, Tanskanen J (2010) Comparison of formic and sulfuric acids as a glucose decomposition catalyst. Ind Eng Chem Res 49(18):8444–8449

    Article  CAS  Google Scholar 

  • Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156(2):395–403

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  CAS  Google Scholar 

  • Maki-Arvela P, Salmi T, Holmbom B, Willfor S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111(9):5638–5666

    Article  CAS  Google Scholar 

  • Morales-delaRosa S, Campos-Martin JM (2014) Catalytic processes and catalyst development in biorefining. In: Waldron KW (ed) Advances in biorefineries. Woodhead Publishing Series in Energy. Woodhead Publishing Limited, Cambridge, UK, pp 152–198

  • Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2012) High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chem Eng J 181–182:538–541

    Article  Google Scholar 

  • Nishiyama Y, Johnson G, French A (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  • Pilath HM, Nimlos MR, Mittal A, Himmel ME, Johnson DK (2010) Glucose reversion reaction kinetics. J Agric Food Chem 58(10):6131–6140

    Article  CAS  Google Scholar 

  • Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107

    Article  CAS  Google Scholar 

  • Sharples A (1957) The hydrolysis of cellulose and its relation to structure. Trans Faraday Soc 53:1003–1013

    Article  CAS  Google Scholar 

  • Sharples A (1958) The hydrolysis of cellulose and its relation to structure. Part 2. Trans Faraday Soc 54:913–917

    Article  CAS  Google Scholar 

  • Shimizu K-i, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11(10):1627

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  • Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17(3):587–594

    Article  CAS  Google Scholar 

  • Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to our research sponsors, Comunidad de Madrid (Spain) (S2009/ENE-1743) and CSIC (Spain) (201080E008 and 201180E038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose M. Campos-Martin or Jose L. G. Fierro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-delaRosa, S., Campos-Martin, J.M. & Fierro, J.L.G. Optimization of the process of chemical hydrolysis of cellulose to glucose. Cellulose 21, 2397–2407 (2014). https://doi.org/10.1007/s10570-014-0280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0280-9

Keywords

Navigation