Skip to main content
Log in

Ultra-low Temperature Catalytic Combustion of Toluene over Pd-Loaded Poplar Wood Monolithic Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Reducing the ignition temperature of aromatic volatile organic compounds (VOCs) is a long-term pursuit for environmental pollution treatment and industrial application. In this paper, the toluene catalytic combustion was ignited at ultra-low temperature of 73 °C over a poplar wood monolithic catalyst with highly dispersed Pd particles coated by nano-thick graphited carbon layer via in-situ carbonization. Combing the characterizations and DFT calculations, the satisfying catalytic performance could be attributed to two aspects: (i) the unrestricted mass transfer of reactant and the high dispersity of Pd were simultaneously ensured in the straight micrometer-channel with abundant surface anchoring groups of poplar wood; (ii) the nano-thick graphited carbon layer on Pd significantly enhanced the oxygen activation. Given the low cost of economic wood and facile preparation technique, this work opened up new alternative for the preparation of highly dispersed noble metal catalyst and the low temperature catalytic combustion of aromatic VOCs in industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo Q, Liu Y, Qi G et al (2018) Behavior of activated carbons by compound modification in high gravity for toluene adsorption. Adsorpt Sci Technol 36:1018–1030. https://doi.org/10.1177/0263617417744401

    Article  CAS  Google Scholar 

  2. Zhu X, Hu J, Liu G et al (2021) Unique 3D interpenetrating capillary network of wood veneer for highly efficient cross flow filtration. J Mater Sci 56:3155–3167. https://doi.org/10.1007/s10853-020-05478-6

    Article  ADS  CAS  Google Scholar 

  3. Feng X, Liu H, He C et al (2018) Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catal Sci Technol 8:936–954. https://doi.org/10.1039/C7CY01934C

    Article  CAS  Google Scholar 

  4. Qin Y, Qu Z, Dong C et al (2019) Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports. J Environ Sci 76:208–216. https://doi.org/10.1016/j.jes.2018.04.027

    Article  CAS  Google Scholar 

  5. Qin L, Song J, Qin W et al (2023) Promotion effect of microwave-assisted prepared porous Fe-Mn catalyst on toluene removal. Catal Lett. https://doi.org/10.1007/s10562-023-04388-x

    Article  Google Scholar 

  6. Pérez-Cadenas AF, Kapteijn F, Moulijn JA et al (2006) Pd and Pt catalysts supported on carbon-coated monoliths for low-temperature combustion of xylenes. Carbon 44:2463–2468. https://doi.org/10.1016/j.carbon.2006.05.006

    Article  CAS  Google Scholar 

  7. Xu D, Zhu W, Li H et al (2009) Oxidative desulfurization of fuels catalyzed by V2O5 in ionic liquids at room temperature. Energy Fuels 235:929–5933. https://doi.org/10.1021/ef900686q

    Article  CAS  Google Scholar 

  8. Ousmane M, Liotta LF, Carlo GD et al (2011) Supported Au catalysts for low-temperature abatement of propene and toluene as model VOCs: support effect. Appl Catal B 101:629–637. https://doi.org/10.1016/j.apcatb.2010.11.004

    Article  CAS  Google Scholar 

  9. Joung HJ, Kim JH, Oh JS et al (2014) Catalytic oxidation of VOCs over CNT supported platinum nanoparticles. Appl Surf Sci 209:267–273. https://doi.org/10.1016/j.apsusc.2013.11.066

    Article  ADS  CAS  Google Scholar 

  10. Aghbolaghy M, Soltan J, Chen N (2018) Low temperature catalytic oxidation of binary mixture of toluene and acetone in the presence of ozone. Catal Lett 148:3431–3444. https://doi.org/10.1007/s10562-018-2536-8

    Article  CAS  Google Scholar 

  11. Guo Y, Gao Y, Li X et al (2019) Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chem Eng J 362:41–52. https://doi.org/10.1016/j.cej.2019.01.012

    Article  CAS  Google Scholar 

  12. Wu M, Chen S, Soomro A et al (2019) Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature. Environ Sci Pollut R 26:12123–12135. https://doi.org/10.1007/s11356-019-04672-7

    Article  CAS  Google Scholar 

  13. Li J, Xu Z, Wang T et al (2022) A versatile route to fabricate Metal/UiO-66 (Metal = Pt, Pd, Ru) with high activity and stability for the catalytic oxidation of various volatile organic compounds. Chem Eng J 448(15):136900. https://doi.org/10.1016/j.cej.2022.136900

    Article  CAS  Google Scholar 

  14. Khawaja RE, Sonar S, Barakat T et al (2022) VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catal Today 405–406:212–220. https://doi.org/10.1016/j.cattod.2022.05.022

    Article  CAS  Google Scholar 

  15. Li W, Ye H, Liu G et al (2018) The role of graphene coating on Cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene. Chin J Catal 39:946–954. https://doi.org/10.1016/S1872-2067(18)63015-3

    Article  ADS  CAS  Google Scholar 

  16. He J, Zheng F, Zhou Y et al (2022) Catalytic oxidation of VOCs over 3D@2D Pd/CoMn2O4 nanosheets supported on hollow Al2O3 microspheres. J Colloid Interf Sci 613:155–167. https://doi.org/10.1016/j.jcis.2022.01.023

    Article  ADS  CAS  Google Scholar 

  17. Li Y, Gao T, Yao Y et al (2018) In situ ‘chainmail catalyst’ assembly in low-tortuosity, hierarchical carbon frameworks for efficient and stable hydrogen generation. Adv Energy Mater 8:35–42. https://doi.org/10.1002/aenm.201801289

    Article  CAS  Google Scholar 

  18. Fu Z, Liu L, Song Y et al (2017) Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: effect of Pd loading. Front Chem Sci Eng 11:185–196. https://doi.org/10.1007/s11705-017-1631-5

    Article  CAS  Google Scholar 

  19. Wang B, Yang Q, Li B et al (2023) Heterostructure-strengthened metal-support interaction of single-atom Pd catalysts enabling efficient oxygen activation for CO and VOC oxidation. Appl Catal B 332:122753. https://doi.org/10.1016/j.apcatb.2023.122753

    Article  CAS  Google Scholar 

  20. Li C, Zhang F, Feng S et al (2018) SiC@TiO2/Pt catalytic membrane for collaborative removal of VOCs and nanoparticles. Ind Eng Chem Res 57:10564–10571. https://doi.org/10.1021/acs.iecr.8b02264

    Article  CAS  Google Scholar 

  21. Nunotani N, Saeki S, Matsuo K et al (2020) Novel catalysts based on lanthanum oxyfluoride for toluene combustion. Mater Lett 12:12–15. https://doi.org/10.1016/j.matlet.2019.126802

    Article  CAS  Google Scholar 

  22. More RK, Lavande NR, More PM (2020) Mn Supported on Ce substituted hydroxyapatite for VOC oxidation: catalytic activity and calcination effect. Catal Lett 150:419–428. https://doi.org/10.1007/s10562-019-03091-0

    Article  CAS  Google Scholar 

  23. Chen F, Gong AS, Zhu M et al (2017) Three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11:4275–4282. https://doi.org/10.1021/acsnano.7b01350

    Article  CAS  PubMed  Google Scholar 

  24. Liu G, Chen D, Liu R et al (2019) Antifouling wood matrix with natural water transfer and microreaction channels for water treatment. ACS Sustain Chem Eng 7:6782–6791. https://doi.org/10.1021/acssuschemeng.8b06060

    Article  CAS  Google Scholar 

  25. Liu Z, Wang Y, Zhang G et al (2022) Preparation of graphene-based catalysts and combined DBD reactor for VOC degradation. Environ Sci Pollut Res 29:51717–51731. https://doi.org/10.1007/s11356-022-19483-6

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  27. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/physrevb.50.17953

    Article  ADS  Google Scholar 

  28. Li M, Zhu H, Wei G et al (2019) DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface. RSC Adv 9:35862–35871. https://doi.org/10.1039/c9ra02958c

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu J, Lym J, Zheng W et al (2020) C-O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nat Catal 3:446–453. https://doi.org/10.1038/s41929-020-0445-x

    Article  CAS  Google Scholar 

  30. Tu Y, Zhao L, Sun J et al (2020) Water-mediated spontaneously dynamic oxygen migration on graphene oxide with structural adaptivity for biomolecule adsorption. Chin Phys Lett 37:066803. https://doi.org/10.1088/0256-307X/37/6/066803

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22078367 and 12075201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baining Lin or Yusong Tu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of in-terest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2600 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Du, X., Huang, Z. et al. Ultra-low Temperature Catalytic Combustion of Toluene over Pd-Loaded Poplar Wood Monolithic Catalyst. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04600-6

Keywords

Navigation