Skip to main content
Log in

Degradation effect of diatomite on pyrolysis volatility of pine pellets

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The development of efficient tar degradation catalyst is the research focus in the field of biomass thermal conversion. Considering the characteristics of diatomite, such as large specific surface area and stable chemical properties, a tar catalytic degradation technology using diatomite as catalyst was proposed. The degradation of pine pellets pyrolysis volatiles at different temperatures catalyzed by diatomite was studied. The results showed that diatomite could catalyze the degradation of condensable gas in pine pellet pyrolysis volatiles, and the liquid yield decreased, while the gas yield increased. Compared with no catalyst, the gas yield increased by 12.96% and the liquid yield decreased by 13.01% at 850 ℃. Adding bentonite into diatomite can effectively improve the mechanical strength of the catalyst. Compared with diatomite, bentonite will not reduce the catalytic degradation ability of liquid products. Under the catalysis of diatomite, the low calorific value and the content of each component of the gas product changed little.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jie R, Yiling L, Xiaoyan Z, Jingpei C (2020) Biomass thermochemical conversion: a review on tar elimination from biomass catalytic gasification. J Energy Inst 93(03):1083–1098. https://doi.org/10.1016/j.joei.2019.10.003

    Article  Google Scholar 

  2. Konuklu Y, Eesoy O, Erzin F, ÖnerToramand Y (2019) Experimental study on preparation of lauric acid/microwave-modified diatomite phase change material composites. Sol Energy Mater Sol Cells 194:89–94. https://doi.org/10.1016/j.solmat.2019.01.046

    Article  Google Scholar 

  3. Andrii K, David B, Blaž L (2021) Catalytic Hydrogenation, Hydrocracking and Isomerization Reactions of Biomass Tar Model Compound Mixture over Ni-modified Zeolite Catalysts in Packed Bed Reactor. Renewable Energy 167:409–424. https://doi.org/10.1016/j.renene.2020.11.098

    Article  Google Scholar 

  4. Li Xiangyu SuLu, Wang Yujue Yu, Yanqing WC, Xiaoliang Li, Zhihua W (2012) Catalystic fast pyrolysis of krafy lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front Environ Sci Eng 6:6295–6303. https://doi.org/10.1007/s11783-012-0410-2

    Article  Google Scholar 

  5. Feiqiang G, Xiaolei Li, Yuan L, Kuangye P, Chenglong G, Zhonghao R (2018) Catalytic cracking of biomass pyrolysis tar over char-supported catalysts. Energy Convers Manage 167:81–90. https://doi.org/10.1016/j.enconman.2018.04.094

    Article  Google Scholar 

  6. Lu Qiang, Zhu Xifeng, Li Wenzhi, Chen DengYu (2009) On-line catalytic upgrading of biomass fast pyrolysis products. Chinese Science Bulletin, 254 (11)1941–1948. https://doi.org/10.1007/s11434-009-0273-5

  7. Min Z, Resende FLP, Moutsoglou A (2014) Catalytic fast pyrolysis of aspen lignin via Py-GC/MS. Fuel 116:358–369. https://doi.org/10.1016/j.fuel.2013.07.128

    Article  Google Scholar 

  8. Klinghoffer NB, Castaldi MJ, Nzihou A (2012) Catalyst properties and catalytic performance of char from biomass gasification. Ind Eng Chem Res 51(40):13113–13122. https://doi.org/10.1021/ie3014082

    Article  Google Scholar 

  9. Zhiming S, Bixuan L, Mingzhe Li, Chunquan Li, Shuilin Z (2020) Carboxyl-rich carbon nanocomposite based on natural diatomite as adsorbent for efficient removal of Cr(VI). J Market Res 9(01):948–959. https://doi.org/10.1016/j.jmrt.2019.11.034

    Article  Google Scholar 

  10. Cesario M, Schobing J, Bruder F, Dorge S, Nouali H, Habermacher D, Kerdoncuff P, Vierling M, Moliere M, Brilhac J-F, Patarinb J (2020) Impact of bentonite content on the structural, textural and mechanical properties of SBA-15 mesoporous silica beads. J Porous Mater 27:905–910. https://doi.org/10.1007/s10934-020-00865-5

    Article  Google Scholar 

  11. Puente-Urbina A, Hollenbach J, Céspedes-Camacho IF, Matysik J, Valle-Bourrouet G (2016) Effect of pretreatment temperature on the surface modification of diatomite with trimethylchlorosilane. J Porous Mater 23:1439–1449. https://doi.org/10.1007/s10934-016-0204-1

    Article  Google Scholar 

  12. Zhu Jian, Wang Ping, Lei Mingjing, Zhang Weili (2012) Physicochemical properties, modification and research progress of diatomite. Journal of Central South University of Forestry & Technology, 32(12)61-66. 10.14067 /j.cnki.1673 -923x.2012.12.007

  13. Jun H, Heejoon K (2008) The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew Sustain Energy Rev 12(2):397–416. https://doi.org/10.1016/j.rser.2006.07.015

    Article  Google Scholar 

  14. Yu Weijin, Ying Hao, Wang Yanjie, Sun Ning (2015) Experimental study on CO2 catalytic gasification of pine sawdust. Thermal Power Engineering, 30(04): 639–645+658. https://doi.org/10.16146/j.cnki.rndlgc.2015.04.036

  15. Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U (2003) A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrol 68–69:231–249. https://doi.org/10.1016/S0165-2370(03)00065-2

    Article  Google Scholar 

  16. Peng Hehuan, Xu Jiajia, Wu Youlong, Zhang Wenbiao, Ma Zhongqing (2018) Effect of pyrolysis temperature on physicochemical properties of biochar produced from cellulose, hemicellulose and lignin. Transactions of the Chinese Society of Agricultural Engineering ,34(Z):149–156. https://doi.org/10.11975/j.issn.1002-6819.2018.z.023

  17. Xuanmin Y, Yajun W, Ling Q, Chenglin ZLM (2017) Effect of temperature on physical and chemical properties of biochar prepared by pyrolysis of three components of biomass. Journal of Agricultural Machinery 48(04):284–290. https://doi.org/10.6041/j.issn.1000-1298.2017.04.037

    Article  Google Scholar 

  18. Vassileva PS, Apostolova MS, Detcheva AK, Ivanova EH (2013) Bulgarian natural diatomites: modification and characterization. Chem Pap 67:342–349. https://doi.org/10.2478/s11696-012-0272-x

    Article  Google Scholar 

  19. Awad AM, Shaikh SMR, Jalab R, Gulied MH, Nasser MS, Benamor A, Adham S (2019) Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep Purif Technol 228:115719. https://doi.org/10.1016/j.seppur.2019.115719

    Article  Google Scholar 

  20. Li Hui, Deng Qiang (2018) Adsorption properties of compound organic pollutants on aquifer media surface. China Environmental Science 38(09):3413- 3420. https://doi.org/10.19674/j.cnki.issn1000-6923.2018.0369

  21. Zheng Z, Yong Q (2013) Geoff X Wang. Numerical description of coalbed methane desorption stages based on isothermal adsorption experiment, Science China Earth Sciences 56:1029–1036. https://doi.org/10.1007/s11430-013-4597-2

    Article  Google Scholar 

  22. Shanyu Jiang, Yongshang Kang, Shouren Zhang (2016) Analysis on influencing factors of coalbed methane well drainage and production performance in Shizhuang Block of Qinshui Basin and research on development countermeasures Natural Gas Geoscience 27(06):1134–1142. https://doi.org/10.11764/j.issn.1672-1926.2016.06.1134

    Article  Google Scholar 

  23. Shafaghat H, Rezaei PS, Ro D (2017) In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer. J Ind Eng Chem 447:453. https://doi.org/10.1016/j.jiec.2017.06.026

    Article  Google Scholar 

  24. Yu C, Guhua Li, Jinliang G, Bo L, Wei Qun Xu, Zhen Da (2013) Effect of bentonite on the performance of the limestone manufactured-sand Mortar. Appl Mech Mater 357–360:1374–1378. 10.4028/www.scientific.net/amm.357-360.1374

    Article  Google Scholar 

  25. Guoliang Ma, Xiang He, Xiang J, Hanlong L, Jian C, Yang X (2021) Strength and permeability of bentonite-assisted biocemented coarse sand. Can Geotech J 57(7):969–981. https://doi.org/10.1139/cgj-2020-0045

    Article  Google Scholar 

  26. Yan Li, Xiaojun W, Juanfang W (2012) Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions. J Therm Anal Calorim 110(3):1199–1206. https://doi.org/10.1007/s10973-011-2109-1

    Article  Google Scholar 

  27. Yuhang Wang, Zhongchao Sun, Yinwu Xiong, Haoqiang Zhang (2018) Effect of bentonite binder on denitration performance of activated coke Clean Coal Technology 24(06):77–82. https://doi.org/10.13226/j.issn.1006-6772.18072601

    Article  Google Scholar 

  28. Halt J A, Kawatra S K (2014) Review of organic binders for iron ore concentrate agglomeration, Mining, Metallurgy&Exploration. 31:73-94. 10. 1007/BF03402417

  29. Ochoa A, Bilbaoa J, Gayubo AG, Castaño P (2020) Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review. Renew Sustain Energy Rev 119:109600. https://doi.org/10.1016/j.rser.2019.109600

    Article  Google Scholar 

  30. Chih-Huang W (2002) Removal of Niekel(11) from Dilute Aqueous Solution by Sludge-Ash. Jounral of Enviromnenial Engineering 128(8):716–722. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:8(716)

    Article  Google Scholar 

  31. Chunyan C, Yonghua Z, Yanjun Z (2011) Study on the adsorption of copper ions by bentonite. Advanced Materials Research 311–313:1614–1617. 10.4028/www.scientific.net/amr.311-313.1614

    Article  Google Scholar 

  32. Jian Zhu, Ping Wang, Mingjing Lei, Weili Zhang, Yang Chen (2016) Composite modification of diatomite and its adsorption characteristics for Cd2+ in aqueous solution. J Environ Sci 36(06):2059–2066. https://doi.org/10.13671/j.hjkxxb.2015.0627

    Article  Google Scholar 

  33. Ouardi YEI, Branger C, Toufik H, Laatikainen K, Ouammou A, Lenoble V (2020) An insight of enhanced natural material (calcined diatomite) efficiency in nickel and silver retention: Application to natural effluents. Environ Technol Innov 18:100768. https://doi.org/10.1016/j.eti.2020.100768

    Article  Google Scholar 

  34. Dongbei Wu, Chunming Z, Yonggui C, Baohui Z, Yuhui Y, Qigang W, Weimin Ye (2012) Preparation, characterization and adsorptive study of rare earth ions using magnetic GMZ bentonite. Appl Clay Sci 62–63:87–93. https://doi.org/10.1016/j.clay.2012.04.015

    Article  Google Scholar 

  35. Wei Mo, He Qiuzhi Su, Xiujuan MS, Jinpeng F, Zhenli He (2018) Preparation and characterization of a granular bentonite composite adsorbent and its application for Pb2+ adsorption. Appl Clay Sci 159:68–73. https://doi.org/10.1016/j.clay.2017.12.001

    Article  Google Scholar 

  36. Weili Wu, Songyan Cong (2019) Structure and properties of modified diatomite/rubber composites. Polym bull 08:35–40. https://doi.org/10.14028/j.cnki.1003-3726.2019.08.006

    Article  Google Scholar 

  37. Jingru Wang, Zonglu Yao, Hongbin Cong, Lixin Zhao, Teng Ma, Lili Huo, Yanwen Yuan (2019) Upgrading biomass pyrolysis gas from corn stalk by charcoal catalytic reforming. J Agric Eng 35(16):258–264. https://doi.org/10.11975/j.issn.1002-6819.2019.16.029

    Article  Google Scholar 

Download references

Funding

This study is financially supported by the Inner Mongolia Autonomous Region Natural Science Fund (2018MS05046) and the Scientific Research Project of Institutions of Higher Education in Inner Mongolia Autonomous Region (NJZY16159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunji Pang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Li, G., Chen, Y. et al. Degradation effect of diatomite on pyrolysis volatility of pine pellets. Biomass Conv. Bioref. 13, 9663–9674 (2023). https://doi.org/10.1007/s13399-021-01910-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01910-2

Keywords

Navigation