Skip to main content
Log in

Characterization of porous LaCoO3 prepared from wood powder template and its catalysis for diesel particulate matter

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper, LaCoO3 porous perovskite was synthesized using wood powder template combined with sol–gel process, while LaCoO3 prepared by traditional sol–gel method was used as a comparison. The catalysts prepared by different methods were characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), N2 adsorption–desorption, and the particulate matter (PM) trapping and catalytic oxidation tests were carried out by engine bench test and thermogravimetric analyzer (TGA). The results showed that the porous LaCoO3 successfully replicated the structural features of wood powder from macroscopic to tracheid, forming a porous structure. Porous LaCoO3 exhibits better catalytic activity than powdered LaCoO3 with similar specific surface area, this can be attributed to the porous structure of LaCoO3, which increases the contact area and the number of contact points between PM and catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Da, L. Zeng, C. Wang, T. Mao, R. Chen, C. Gong, G. Fan, Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1-xPtxO3 perovskite oxides. Catal. Today 327, 73–80 (2019)

    Article  CAS  Google Scholar 

  2. R. Khobragade, S.K. Singh, P.C. Shukla, T. Gupta, A.S. Al-Fatesh, A.K. Agarwal, N.K. Labhasetwar, Chemical composition of diesel particulate matter and its control. Catalysis Reviews 61, 447–515 (2019)

    Article  CAS  Google Scholar 

  3. O. Popovicheva, G. Engling, K.-T. Lin, N. Persiantseva, M. Timofeev, E. Kireeva, P. Völk, A. Hubert, G. Wachtmeister, Diesel/biofuel exhaust particles from modern internal combustion engines: Microstructure, composition, and hygroscopicity. Fuel 157, 232–239 (2015)

    Article  CAS  Google Scholar 

  4. J. Xi, B.J. Zhong, Soot in diesel combustion systems. Chem. Eng. Technol. 29, 665–673 (2006)

    Article  CAS  Google Scholar 

  5. D. Fino, E. Cauda, D. Mescia, N. Russo, G. Saracco, V. Specchia, LiCoO2 catalyst for diesel particulate abatement. Catal. Today 119, 257–261 (2007)

    Article  CAS  Google Scholar 

  6. R. Khobragade, G. Saravanan, H. Einaga, H. Nagashima, P. Shukla, T. Gupta, A. Kumar Agarwal, N. Labhasetwar, Diesel fuel particulate emission control using low-cost catalytic materials. Fuel 302, 121157 (2021)

    Article  CAS  Google Scholar 

  7. R. Neha, S.V. Singh. Prasad, A review on catalytic oxidation of soot emitted from diesel fuelled engines. J. Environ. Chem. Eng. 8, 103945 (2020)

    Article  CAS  Google Scholar 

  8. X. Cui, J. Wang, J.P. Cao, P.-T. Zhao, Y.X. Wang, H. Yan, N. Huang, Effect of A-site disubstituted of lanthanide perovskite on catalytic activity and reaction kinetics analysis of coal combustion. Fuel 260, 116380 (2020)

    Article  CAS  Google Scholar 

  9. C. Díaz, L. Urán, A. Santamaria, Preparation method effect of La0.9K0.1Co0.9Ni0.1O3 perovskite on catalytic soot oxidation. Fuel 295, 120605 (2021)

    Article  Google Scholar 

  10. N. Russo, S. Furfori, D. Fino, G. Saracco, V. Specchia, Lanthanum cobaltite catalysts for diesel soot combustion. Appl. Catal. B 83, 85–95 (2008)

    Article  CAS  Google Scholar 

  11. K. Akinlolu, B. Omolara, O. Kehinde, T. Shailendra, Synthesis and characterization of A site doped lanthanum based perovskite catalyst for the oxidation of soot. IOP Conf Ser: Mater. Sci. Eng. 509, 012062 (2019)

    Article  CAS  Google Scholar 

  12. G. Zou, M. Chen, W. Shangguan, Promotion effects of LaCoO3 formation on the catalytic performance of Co–La oxides for soot combustion in air. Catal. Commun. 51, 68–71 (2014)

    Article  CAS  Google Scholar 

  13. X. Wang, Y. Wang, Y. Bai, P. Wang, Y. Zhao, An overview of physical and chemical features of diesel exhaust particles. J. Energy Inst. 92, 1864–1888 (2019)

    Article  CAS  Google Scholar 

  14. F. Fang, P. Zhao, N. Feng, H. Wan, G. Guan, Surface engineering on porous perovskite-type La0.6Sr0.4CoO3-delta nanotubes for an enhanced performance in diesel soot elimination. J. Hazard. Mater. 399, 123014 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. J. Zheng, J. Liu, Z. Zhao, J. Xu, A. Duan, G. Jiang, The synthesis and catalytic performances of three-dimensionally ordered macroporous perovskite-type LaMn1−xFexO3 complex oxide catalysts with different pore diameters for diesel soot combustion. Catal. Today 191, 146–153 (2012)

    Article  CAS  Google Scholar 

  16. W. Yao, R. Wang, X. Yang, LaCo1−xPdxO3 perovskite-type oxides: synthesis, characterization and simultaneous removal of NOx and diesel soot. Catal. Lett. 130, 613–621 (2009)

    Article  CAS  Google Scholar 

  17. R. Li, H. Zheng, D. Li, K. Zhao, J. Li, Y. Chen, X. Yu, J. Liu, Z. Zhao, 3DOM Mn-based perovskite catalysts modified by potassium: facile synthesis and excellent catalytic performance for simultaneous catalytic elimination of soot and NOx from diesel engines. J. Phys. Chem C 125, 25545–25564 (2021)

    Article  CAS  Google Scholar 

  18. J. Ma, Y. Ning, C. Gong, G. Xue, G. Fan, Three-dimensionally ordered macroporous (3DOM) SiOC on a cordierite monolith inner wall and its properties for soot combustion. RSC Adv. 5, 53441–53447 (2015)

    Article  CAS  Google Scholar 

  19. T.X. Fan, S.K. Chow, D. Zhang, Biomorphic mineralization: from biology to materials. Prog. Mater Sci. 54, 542–659 (2009)

    Article  CAS  Google Scholar 

  20. F. Song, H. Su, J. Han, W.M. Lau, W.-J. Moon, D. Zhang, Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties. J. Phys. Chem C 116, 10274–10281 (2012)

    Article  CAS  Google Scholar 

  21. S. Zhao, Y. Wang, L. Wang, Y. Jin, Preparation, characterization and catalytic application of hierarchically porous LaFeO3 from a pomelo peel template, Inorganic Chemistry. Frontiers 4, 994–1002 (2017)

    CAS  Google Scholar 

  22. G. Liu, Y. Li, B. Wang, LiNi0.5Mn1.5O4 with significantly improved rate capability synthesized by a facile template method using pine wood as a bio-template. Mater. Lett. 139, 385–388 (2015)

    Article  CAS  Google Scholar 

  23. C. Chen, L. Hu, Nanoscale ion regulation in wood-based structures and their device applications. Adv Mater 33, e2002890 (2021)

    Article  PubMed  Google Scholar 

  24. Z. Liu, T. Fan, D. Zhang, Synthesis of Biomorphous nickel oxide from a pinewood template and investigation on a hierarchical porous structure. J. Am. Ceram. Soc. 89, 662–665 (2006)

    Article  CAS  Google Scholar 

  25. Z. Liu, T. Fan, W. Zhang, D. Zhang, The synthesis of hierarchical porous iron oxide with wood templates. Microporous Mesoporous Mater. 85, 82–88 (2005)

    Article  CAS  Google Scholar 

  26. P. Li, X. Chen, Y. Li, J.W. Schwank, Effect of preparation methods on the catalytic activity of La0.9Sr0.1CoO3 perovskite for CO and C3H6 oxidation. Catal. Today 364, 7–15 (2021)

    Article  CAS  Google Scholar 

  27. D. Lin, W. Li, X. Feng, Y. Chen, X. Tao, Y. Luo, X. Xia, B. Huang, Q. Qian, Q. Chen, Boosting low temperature propane oxidation on bamboo-mediated biosynthesis of LaCoO3 via the optimized chelating effect. Mole. Catal. 499, 111315 (2021)

    Article  CAS  Google Scholar 

  28. H. Xu, L. Zeng, L. Cui, W. Guo, C. Gong, G. Xue, In-situ generation of platinum nanoparticles on LaCoO3 matrix for soot oxidation. J. Rare Earths. 40(6), 888–896 (2021)

    Article  Google Scholar 

  29. N. Merino, B. Barbero, P. Grange, L. Cadus, LaCaCoO perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. J. Catal. 231, 232–244 (2005)

    Article  CAS  Google Scholar 

  30. Y. Gao, H. Chang, Q. Wu, Y. Liu, M. Li, F. Liu, H. Zhu, Y. Pang, Y. Yun, Structural transformation, spectroscopic characterization and magnetic properties of La1−xGdxCoO3. Curr. Appl. Phys. 16, 922–926 (2016)

    Article  Google Scholar 

  31. G. Pecchi, C. Campos, O. Peña, Thermal stability against reduction of LaMn1−yCoyO3 perovskites. Mater. Res. Bull. 44, 846–853 (2009)

    Article  CAS  Google Scholar 

  32. H. Wang, J. Liu, Z. Zhao, Y. Wei, C. Xu, Comparative study of nanometric Co-, Mn- and Fe-based perovskite-type complex oxide catalysts for the simultaneous elimination of soot and NOx from diesel engine exhaust. Catal. Today 184, 288–300 (2012)

    Article  CAS  Google Scholar 

  33. M.B. Bellakki, C. Madhu, T. Greindl, S. Kohli, P. McCurdy, V. Manivannan, Synthesis and measurement of structural and magnetic properties of K-doped LaCoO3 perovskite materials. Rare Met. 29, 491–500 (2010)

    Article  CAS  Google Scholar 

  34. C. Gong, C. Song, Y. Pei, G. Lv, G. Fan, Synthesis of La0.9K0.1CoO3 fibers and the catalytic properties for diesel soot removal. Industrial. Eng. Chem. Res 47, 4374–4378 (2008)

    Article  CAS  Google Scholar 

  35. B. Sathyamoorthy, P.M. Md Gazzali, C. Murugesan, G. Chandrasekaran, Electrical properties of samarium cobaltite nanoparticles synthesized using Sol-Gel autocombustion route. Mater. Res. Bull 53, 169–176 (2014)

    Article  CAS  Google Scholar 

  36. S.Y. Ding, S. Zhao, Y. Zeng, Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21, 863–871 (2013)

    Article  Google Scholar 

  37. D.W. Lee, J.Y. Sung, J.H. Park, Y.K. Hong, S.H. Lee, S.H. Oh, K.Y. Lee, The enhancement of low-temperature combustion of diesel PM through concerted application of FBC and perovskite. Catal. Today 157, 432–435 (2010)

    Article  CAS  Google Scholar 

  38. F. Zhang, Y. Chen, M. Cui, Y. Feng, X. Yang, J. Chen, Y. Zhang, H. Gao, C. Tian, V. Matthias, H. Liu, Emission factors and environmental implication of organic pollutants in PM emitted from various vessels in China. Atmos. Environ. 200, 302–311 (2019)

    Article  CAS  Google Scholar 

  39. W. Mühlbauer, C. Zöllner, S. Lehmann, S. Lorenz, D. Brüggemann, Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity. Combust. Flame 167, 39–51 (2016)

    Article  Google Scholar 

  40. Y. Teraoka, K. Nakano, W. Shangguan, S. Kagawa, Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides. Catal. Today 27, 107–113 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NO.52072055), and Natural Science Foundation of Heilongjiang Province (NO. LH2022E002).

Funding

National Natural Science Foundation of China,52072055; Natural Science Foundation of Heilongjiang Province, LH2022E002.

Author information

Authors and Affiliations

Authors

Contributions

XG, SY and YW for manuscript writing. ZQ and DD collect and organize literature. CS and XG do the experiment and organize the data.

Corresponding author

Correspondence to Xiurong Guo.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yang, S., Wang, Y. et al. Characterization of porous LaCoO3 prepared from wood powder template and its catalysis for diesel particulate matter. J Porous Mater 30, 911–920 (2023). https://doi.org/10.1007/s10934-022-01393-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01393-0

Keywords

Navigation