Skip to main content
Log in

DFT Studies on Mechanism of Organocatalytic Metal-Free Click 32CA Reaction for Synthesis of NH-1,2,3-triazoles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The mechanism of enamine-mediated organocatalytic [3 + 2] cycloaddition (32CA) reaction of Hagemann’s ester to p-toluenesulfonyl azide in the present L-proline as a catalyst has been investigated using M06-2X functional with the 6-31+G(d) basis set. The effects of the different solvents were studied with a 6-311+G(d,p) basis set. In addition, the effects of the keto ester substitutions: one model system M1 (R1 = CH3 and R2 = H) and two real systems R2 (R1 = R2 = Me) and R3 (R1 = Et and R2 = Me) also studied in this work. DFT results indicated that the different solvents show the same effect, which leads to a decrease in the ΔG298 along the reaction pathway compared to the gas phase. Moreover, the model system M1 has a lower activation free energy (17.5 kcal/mol) than real systems R2 and R3 by about 3.8 and 3.2 kcal/mol in the solution phase (DMSO), respectively. Analysis of the global and local reactivity indices of the reactants was performed in the gas and solution phases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lima CG, Ali A et al (2015) Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide–alkyne cycloaddition. Chem Commun 51(54):10784–10796. https://doi.org/10.1039/C5CC04114G

    Article  CAS  Google Scholar 

  2. John J, Thomas J, Dehaen W (2015) Organocatalytic routes toward substituted 1,2,3-triazoles. Chem Commun 51(54):10797–10806. https://doi.org/10.1039/C5CC02319J

    Article  CAS  Google Scholar 

  3. Jalani HB, Karagöz AÇ, Tsogoeva SB (2017) Synthesis of substituted 1,2,3-triazoles via metal-free click cycloaddition reactions and alternative cyclization methods. Synthesis 49(01):29–41. https://doi.org/10.1055/s-0036-1588904

    Article  CAS  Google Scholar 

  4. Opsomer T, Dehaen W (2021) Metal-free syntheses of N-functionalized and NH-1,2,3-triazoles: an update on recent developments. Chem Commun 57(13):1568–1590. https://doi.org/10.1039/D0CC06654K

    Article  CAS  Google Scholar 

  5. Dehaen W, Bakulev VA (eds) (2015) Chemistry of 1,2,3-triazoles, vol 40. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-07962-2

    Book  Google Scholar 

  6. Ramachary DB, Ramakumar K, Narayana VV (2008) Amino acid-catalyzed cascade [3 + 2]-cycloaddition/hydrolysis reactions based on the push–pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry A 14(30):9143–9147. https://doi.org/10.1002/chem.200801325

    Article  CAS  Google Scholar 

  7. Danence LJT et al (2011) Organocatalytic enamide–azide cycloaddition reactions: regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. Chemistry A 17(13):3584–3587. https://doi.org/10.1002/chem.201002775

    Article  CAS  Google Scholar 

  8. Thomas J et al (2016) A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem Commun 52(14):2885–2888. https://doi.org/10.1039/C5CC08347H

    Article  ADS  CAS  Google Scholar 

  9. Wan JP, Cao S, Liu Y (2015) A metal- and azide-free multicomponent assembly toward regioselective construction of 1,5-disubstituted 1,2,3-triazoles. J Org Chem 80(18):9028–9033. https://doi.org/10.1021/acs.joc.5b01121

    Article  CAS  PubMed  Google Scholar 

  10. Li W et al (2014) Direct access to 1,2,3-triazoles through organocatalytic 1,3-dipolar cycloaddition reaction of allyl ketones with azides. Green Chem 16(6):3003–3006. https://doi.org/10.1039/C4GC00406J

    Article  ADS  CAS  Google Scholar 

  11. Ramachary DB, Shashank AB (2013) Organocatalytic triazole formation, followed by oxidative aromatization: regioselective metal-free synthesis of benzotriazoles. Chemistry 19(39):13175–13181. https://doi.org/10.1002/chem.201301412

    Article  CAS  PubMed  Google Scholar 

  12. Li W et al (2013) Direct access to triazole-olefins through catalytic cycloaddition of azides to unsaturated aldehydes. Chem Commun 49(86):10187–10189. https://doi.org/10.1039/C3CC45306E

    Article  CAS  Google Scholar 

  13. Yeung DKJ et al (2013) Organocatalytic 1,3-dipolar cycloaddition reactions of ketones and azides with water as a solvent. Green Chem 15(9):2384–3238. https://doi.org/10.1039/C3GC41126E

    Article  ADS  CAS  Google Scholar 

  14. Belkheira M et al (2011) Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and arylazides. Chemistry A 17(46):12917–12921. https://doi.org/10.1002/chem.201102046

    Article  CAS  Google Scholar 

  15. Kamalraj VR, Senthil S, Kannan P (2008) One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers. J Mol Struct 892(1–3):210–215. https://doi.org/10.1016/j.molstruc.2008.05.028

    Article  ADS  CAS  Google Scholar 

  16. Cheng G et al (2013) A metal-free multicomponent cascade reaction for the regiospecific synthesis of 1,5-disubstituted 1,2,3-triazoles. Angew Chem Int Ed 52(50):13265–13268. https://doi.org/10.1002/anie.201307499

    Article  ADS  CAS  Google Scholar 

  17. Ramachary DB, Shashank AB, Karthik S (2014) An organocatalytic azide–aldehyde [3 + 2] cycloaddition: high-yielding regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. Angew Chem Int Ed 53(39):10420–10424. https://doi.org/10.1002/anie.201406721

    Article  CAS  Google Scholar 

  18. Ali A et al (2014) An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chem Commun 50(80):11926–11929. https://doi.org/10.1039/C4CC04678A

    Article  CAS  Google Scholar 

  19. Li W, Wang J (2014) Lewis base catalyzed aerobic oxidative intermolecular azide–zwitterion cycloaddition. Angew Chem Int Ed 53(51):14186–14190. https://doi.org/10.1002/anie.201408265

    Article  CAS  Google Scholar 

  20. Shashank AB et al (2014) An enolate-mediated organocatalytic azide–ketone [3 + 2]-cycloaddition reaction: regioselective high-yielding synthesis of fully decorated 1,2,3-triazoles. Chemistry A 20(51):16877–16881. https://doi.org/10.1002/chem.201405501

    Article  CAS  Google Scholar 

  21. Ramachary DB et al (2015) An organocatalytic regiospecific synthesis of 1,5-disubstituted 4-thio-1,2,3-triazoles and 1,5-disubstituted 1,2,3-triazoles. Chemistry A 21(47):16775–16780. https://doi.org/10.1002/chem.201503302

    Article  CAS  Google Scholar 

  22. Li W et al (2015) Organocatalytic 1,3-dipolar cycloaddition reaction of α,β-unsaturated ketones with azides through iminium catalysis. Green Chem 17(2):781–784. https://doi.org/10.1039/C4GC01929F

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Efimov I et al (2014) Reactions of β-azolylenamines with sulfonyl azides as an approach to n-unsubstituted 1,2,3-triazoles and ethene-1,2-diamines. Eur J Org Chem 17:3684–3689. https://doi.org/10.1002/ejoc.201402130

    Article  CAS  Google Scholar 

  24. Bakulev VA et al (2018) The rich chemistry resulting from the 1,3-dipolar cycloaddition reactions of enamines and azides. Eur J Org Chem 2018(3):262–294. https://doi.org/10.1002/ejoc.201701031

    Article  CAS  Google Scholar 

  25. Thomas J et al (2016) Metal-free route for the synthesis of 4-acyl-1,2,3-triazoles from readily available building blocks. Chemistry A 22(29):9966–9970. https://doi.org/10.1002/chem.201601928

    Article  CAS  Google Scholar 

  26. Wan J-P, Cao S, Liu Y (2016) Base-promoted synthesis of N-substituted 1,2,3-triazoles via enaminone–azide cycloaddition involving Regitz diazo transfer. Org Lett 18(23):6034–6037. https://doi.org/10.1021/acs.orglett.6b02975

    Article  CAS  PubMed  Google Scholar 

  27. Yang L et al (2018) Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide. Beilstein J Org Chem 14(1):2348–2353. https://doi.org/10.3762/bjoc.14.210

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Badawi MAAH (2022) Mechanism of diethylamine/DBU-catalyzed cycloaddition of azides to unsaturated aldehydes: a quantum mechanical investigation. Comput Theor Chem 1209:113593. https://doi.org/10.1016/j.comptc.2022.113593

    Article  CAS  Google Scholar 

  29. Domingo LR (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21(10):1319. https://doi.org/10.3390/molecules21101319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jomaa I, Issaoui N, Roisnel T, Marouani H (2021) Insight into non-covalent interactions in a tetrachlorocadmate salt with promising NLO properties: experimental and computational analysis. J Mol Struct 1242:130730. https://doi.org/10.1016/j.molstruc.2021.130730

    Article  CAS  Google Scholar 

  31. Kazachenko AS, Akman F, Sagaama A, Issaoui N, Malyar YN, Vasilieva NY, Borovkova VS (2021) Theoretical and experimental study of guar gum sulfation. J Mol Model 27:1–15. https://doi.org/10.1007/s00894-020-04645-5

    Article  CAS  Google Scholar 

  32. Issaoui N, Abdessalem K, Ghalla H, Yaghmour SJ, Calvo F, Oujia B (2014) Theoretical investigation of the relative stability of Na+ He n (n = 2–24) clusters: many-body versus delocalization effects. J Chem Phys 141(17):174316. https://doi.org/10.1063/1.4900873

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sagaama A, Issaoui N, Al-Dossary O, Kazachenko AS, Wojcik MJ (2021) Non covalent interactions and molecular docking studies on morphine compound. J King Saud Univ Sci 33(8):101606. https://doi.org/10.1016/j.jksus.2021.101606

    Article  Google Scholar 

  34. Domingo LR et al (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748. https://doi.org/10.3390/molecules21060748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Domingo LR et al (2016) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. Molecules 21:748. https://doi.org/10.1039/c2ra22886f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanna RR, Sakthipandi K, Lenin N, Samuel EJJ (2019) Neodymium doped on the manganese–copper nanoferrites: analysis of structural, optical, dielectric and magnetic properties. J Mater Sci Mater Electron 30:4473–4486. https://doi.org/10.1007/s10854-019-00736-z

    Article  CAS  Google Scholar 

  37. Bulla SS, Bhajantri RF, Chavan C, Sakthipandi K (2021) Synthesis and characterization of polythiophene/zinc oxide nanocomposites for chemiresistor organic vapor-sensing application. J Polym Res 28(7):251. https://doi.org/10.1007/s10965-021-02618-7

    Article  CAS  Google Scholar 

  38. Chavan C, Bhajantri RF, Cyriac V, Bulla S, Ravikumar HB, Raghavendra M, Sakthipandi K (2022) Exploration of free volume behavior and ionic conductivity of PVA: x (x = 0, Y2O3, ZrO2, YSZ) ion-oxide conducting polymer ceramic composites. J Non-Cryst Solids 590:121696. https://doi.org/10.1016/j.jnoncrysol.2022.121696

    Article  CAS  Google Scholar 

  39. Kumar GGV, Kesavan MP, Tamilselvi A, Rajagopal G, Raja JD, Sakthipandi K, Rajesh J, Sivaraman G (2018) A reversible fluorescent chemosensor for the rapid detection of Hg2+ in an aqueous solution: its logic gates behavior. Sens Actuators B 273:305–315. https://doi.org/10.1016/j.snb.2018.06.067

    Article  CAS  Google Scholar 

  40. Domingo LR, Emamian SR (2014) Understanding the mechanisms of [3 + 2] cycloaddition reactions. The pseudoradical versus the zwitterionic mechanism. Tetrahedron 70(6):1267–1273. https://doi.org/10.1016/j.tet.2013.12.059

    Article  CAS  Google Scholar 

  41. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382. https://doi.org/10.1021/ct0502763

    Article  CAS  PubMed  Google Scholar 

  42. Frisch MJ et al (2013) Gaussian 09. Revision D. 01 [CP]. Gaussian, Inc., Wallingford CT

    Google Scholar 

  43. Dennington R, Keith T, Millam J (2009) GaussView. Semichem Inc., Shawnee Mission

    Google Scholar 

  44. Cossi M et al (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117(1):43–54. https://doi.org/10.1063/1.1480445

    Article  ADS  CAS  Google Scholar 

  45. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  46. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  47. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org 73(12):4615–4624. https://doi.org/10.1021/jo800572a

    Article  CAS  Google Scholar 

  48. Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3(5):1486–1494. https://doi.org/10.1039/C2RA22886F

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjith Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 489 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hakim Badawi, M.A., Al-Zaben, M.I. & Thomas, R. DFT Studies on Mechanism of Organocatalytic Metal-Free Click 32CA Reaction for Synthesis of NH-1,2,3-triazoles. Catal Lett 154, 1134–1141 (2024). https://doi.org/10.1007/s10562-023-04374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04374-3

Keywords

Navigation