Skip to main content
Log in

Theoretical and experimental study of guar gum sulfation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The synthesis of guar gum sulfates by a complex of sulfur trioxide with 1,4-dioxane was studied. The influence of temperature, process duration, and the volume of chlorosulfonic acid on the degree of substitution of guar gum sulfates was studied. The sulfation process has been optimized using the Box-Behnken design. It was shown that the optimal conditions for sulfation of guar gum with a complex of sulfur trioxide-1.4-dioxane: temperature 60 °C, duration 2.9 h, and a volume of chlorosulfonic acid of 3.1 ml. Sulfate groups embedding into the structure of guar gum was confirmed by elemental analysis and FTIR. The initial and sulfated guar gum were also characterized by methods: X-ray diffraction, scanning electron microscopy, and gel permeation chromatography. Using X-ray diffraction, it was shown that amorphization of guar gum occurs during sulfation. Using scanning electron microscopy, it was shown that the morphology of guar gum changes in the process of sulfation. Using gel permeation chromatography, it was shown in the process of guar gum sulfation by a complex of sulfur trioxide with 1,4-dioxane, the molecular weight decreases from 600 to 176 kDa. The geometric parameters of all complexes were carried out by using the DFT/B3PW91 method with a 6-31 + G (d,p) basis set. These structures are optimized to predict the important properties of a theme. MEP with contour map has been performed to obtain the electronic properties. Frontier molecular orbital HOMO-LUMO orbital diagram has been obtained for different energy levels and their band gap energies have been computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao X, Zhou H, Sikarwar VS, Zhao M, Park A-HA, Fennell PS, Shen L, Fan L-S (2017). Energy Environ Sci 10(9):1885–1910

    Article  CAS  Google Scholar 

  2. Medvedeva EN, Babkin VA, Ostrouhova LA (2003). Chem Raw Plant Mater 1:27–37

    Google Scholar 

  3. Dushkin AV, Meteleva ES, Tolstikova TG, Pavlova AV, Khvostov MV (2013). Pharm Chem J 46(10):630–633

    Article  CAS  Google Scholar 

  4. Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Souza BWS, Teixeira JA, Vicenta AA (2011). Trends Food Sci Technol 22:662–671

    Article  CAS  Google Scholar 

  5. Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN, Variya BC (2013). Int J Biol Macromol 60:83–92

    Article  CAS  PubMed  Google Scholar 

  6. Filatova AV, Azimova LB, Turaev AS (2020). Chem Plant Raw Mater 1:33–39

    Article  Google Scholar 

  7. Mercier T, Guldentops E, Lagrou K, Maertens J (2018). Front Microbiol 9:661

    Article  PubMed  PubMed Central  Google Scholar 

  8. Perera N, Yang FL, Chang CM, Lu YT, Zhan SH, Tsai YT, Hsieh JF, Li LH, Hua KF, Wu SH (2017). Org Lett 19(13):3486–3489

    Article  CAS  PubMed  Google Scholar 

  9. Tolstenkov AS, Drozd NN, Lapikova EU, Makarov VA, Mestechkina NM, Bannikova GE, Ilyina AB, Varlamov VP (2007). Clinical Hematol Hemorheol in Cardiovasc Surgery 7:242–243 (in Rus)

  10. Mestechkina NM, Anulov OV, Scherbukhin VD (1998). Appl Biochem Microbiol (Rus) 34(5):549–552

    CAS  Google Scholar 

  11. Mestechkina NM, Dovletmuradov K, Scherbukhin VD (1991). Appl Biochem Microbiol (Rus) 27(3):435–441

    CAS  Google Scholar 

  12. Krishtanova NA, Safonova MJ, Bolotova VTS (2005). Proc Voronezh St Univ Ser: Chem Biol Pharm 1:212–221 (in Russ)

    Google Scholar 

  13. Mudgil D, Barak S, Khatkar BS (2014). J Food Sci Technol 51:409–418

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto Y (2001). J Japan Soc Nutr Food Sci 54:139–145

    Article  CAS  Google Scholar 

  15. Zhang LM, Zhou JF, Hui PS (2005). J Sci Food Agric 85:2638–2644

    Article  CAS  Google Scholar 

  16. Hasan AMA, Abdel-Raouf ME (2018). Egypt J Pet 27:1043–1050

    Article  Google Scholar 

  17. Jano A, Lame A, Kokalari E (2012). Kemija u industriji (J Chem Chem Eng) 61(11–12):497–503

    CAS  Google Scholar 

  18. About S, Zouarhi M, Chebabe D, Damej M, Berisha A, Hajjaji N (2020). Heliyon 6(3):e03574

    Article  Google Scholar 

  19. Mothé CG, Correia DZ, de França FP, Riga AT (2006). J Therm Anal Calorim 85:31–36

    Article  Google Scholar 

  20. Adewole JK, Muritala KB (2019). J Petrol Explor Prod Technol 9(3):2297–2307

    Article  Google Scholar 

  21. Mohayeji M, Farsi M, Rahimpour MR, Shariati A (2016). J Taiwan Inst Chem Eng 60:76–82

    Article  CAS  Google Scholar 

  22. Caputo HE, Strau JE, Grinstaff MW (2019). Chem Soc Rev 48:2338–2365

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Wang J, Zhang J, Zhao B, Yao J, Wang Y (2009). Int J Biol Macromol 46(1):59–66

    Article  PubMed  Google Scholar 

  24. Mestechkina NM, Egorov AV, Shcherbukhin VD (2006). Appl Biochem Microbiol 4:326

    Article  Google Scholar 

  25. Wang J, Zhao B, Wang X, Yao J, Zhang J (2012). Int J Biol Macromol 50(5):1201–1206

    Article  CAS  PubMed  Google Scholar 

  26. Al-Horani RA, Desai UR (2010). Tetrahedron 66(16):2907–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kazachenko AS, NYu V, Sudakova IG, Levdansky VA, Lutoshkin MA, Kuznetsov BN (2020). J Sib Fed Univ Chem 13(2):232–246

    Article  Google Scholar 

  28. Pen RZ (2014) Planning an experiment at Statgraphics Centurion. Krasnoyarsk: SibSTU 293

  29. Becke AD (1988). Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Wang Y (1996). Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  31. Young D (2001) Computational chemistry: a practical guide for applying techniques to real world problems, vol 408. Wiley, New York

    Book  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2010) Gaussian, Inc., Wallingford

  33. Dennington R, Keith T, Millam J (2010) Gauss View, Version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  34. Parr RG, Pearson RG (1983). J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  35. Noureddine O, Gatfaoui S, Brandan SA, Marouani H, Issaoui N (2020). J Mol Struct 1202:127351

    Article  CAS  Google Scholar 

  36. Gatfaoui S, Issaoui N, Roisnel T, Marouani H (2019). J Mol Struct 1191:183–196

    Article  CAS  Google Scholar 

  37. Mudgil D, Barak S, Khatkar BS (2012). J Biol Macromol 50(4):1035–1039

    Article  CAS  Google Scholar 

  38. Wang Q, Ellisa PR, Ross-Murphy SB (2003). Carbohyd Polym 53:75–83

    Article  CAS  Google Scholar 

  39. Sagaama A, Noureddine O, Brandan SA, Jedryka AJ, Flakus HT, Ghalla H, Issaoui N (2020). Comput Biol Chem 87:107311

    Article  CAS  PubMed  Google Scholar 

  40. Issa TB, Sagaama A, Issaoui N (2020). Comput Biol Chem 86:107268

    Article  PubMed  Google Scholar 

  41. Gatfaoui S, Sagaama A, Issaoui N, Roisnel T, Marouani H (2020). Solid State Sci:106326

  42. Noureddine O, Gatfaoui S, Brandan SA, Sagaama A, Marouani H, Issaoui N (2020). J Mol Struct 1207:127762

    Article  Google Scholar 

  43. Jomaa I, Noureddine O, Gatfaoui S, Issaoui N, Roisnel T, Marouani H (2020). J Mol Struct 1213:128186

    Article  CAS  Google Scholar 

  44. Noureddine O, Gatfaoui S, Brandán SA, Marouani H, Issaoui N (2020). J Mol Struct 1202:127351

    Article  CAS  Google Scholar 

  45. Politzer P, Murray JS (2018). J Comput Chem 39:464–471

    Article  CAS  PubMed  Google Scholar 

  46. Politzer P, Murray JS (2020). ChemPhysChem 21:579–588

    Article  CAS  PubMed  Google Scholar 

  47. Politzer P, Murray JS, Clark T (2015). Top Curr Chem 358:19–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The devices of the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” were used in the work. The authors are grateful to G.N. Bondarenko for obtaining X-ray data, Korolkova I.V. for obtaining FTIR spectra and Antonov A.V. for obtaining SEM images. Besides, the authors thank Bitlis Eren University for supporting the Gaussian 09W software and Bingol University for the server.

Availability of data and material

N/A.

Funding

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia. The publication also supported by RFBR, project № 20-33-70256.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Aleksandr S. Kazachenko, Feride Akman, Abir Sagaama, Noureddine Issaoui; methodology: Aleksandr S. Kazachenko, Feride Akman, Noureddine Issaoui; formal analysis and investigation: Feride Akman, Abir Sagaama, Noureddine Issaoui, Yuriy N. Malyar, Valentina S. Borovkova, Aleksandr S. Kazachenko; writing—original draft preparation: Noureddine Issaoui, Feride Akman, Abir Sagaama, Aleksandr S. Kazachenko; writing—review and editing: Aleksandr S. Kazachenko, Feride Akman, Abir Sagaama, Noureddine Issaoui; supervision: Feride Akman, Abir Sagaama, Noureddine Issaoui, Natalya Yu. Vasilieva.

Corresponding author

Correspondence to Aleksandr S. Kazachenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

N/A.

Ethics approval

N/A. In the course of work on this article, the authors did not conduct research on animals and humans in any form.

Consent to participate

N/A.

Code availability

N/A.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazachenko, A.S., Akman, F., Sagaama, A. et al. Theoretical and experimental study of guar gum sulfation. J Mol Model 27, 5 (2021). https://doi.org/10.1007/s00894-020-04645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04645-5

Keywords

Navigation