Skip to main content
Log in

The highly enantioselective bifunctional organocatalysts for the Michael addition of сyclohexanone to titroolefins

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A new family of organocatalyst derived from proline has been developed and shown to be an efficient catalyst for asymmetric Michael addition of cyclohexanone to nitroolefins with high diastereo- and enanthio -selectivities. (syn: anti ratio up to 99:1, ee. up to 95%.). The result of computational studies at the B3LYP/6-31G* level indicate that both the hydrogen bonding and the stereo hindrance play the crucial role in the activation of the nitro alkene and help to discriminate between the two diastereofacial approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalko, P.I., Angew. Chem. Int. Ed. 2004, vol. 43, p. 5138. DOI: 10.1002/anie.200400650.

    Article  CAS  Google Scholar 

  2. Perlmutter, A., Conjugative Additions in Organic Synthesis, Oxford Pergamon Press, 1992.

    Google Scholar 

  3. Ballini, R., Bosica, G., Fiorini, D., Palmieri, A., and Petrini, M., Chem. Rev. 2005, vol 105, p. 933. DOI: 10.1021/cr040602r.

    Article  CAS  Google Scholar 

  4. Ono, N., The Nitro Group in Organic Synthesis New York: Wiley-VCH, 2001.

    Book  Google Scholar 

  5. Berner, O.M., Tedeschi, L., and Enders, D., Eur. J. Org. Chem. 2002, p. 1877. DOI: 10.1002/1099-0690(200206)2002:12<1877::AIDEJOC1877> 3.0.CO;2-U.

    Google Scholar 

  6. Sakthive, K.I., Notz, W., Bui, T., and Barbas, C.F., J. Am. Chem.Soc. 2001, vol. 123, p. 5260. DOI: 10.1021/ja010037z.

    Article  Google Scholar 

  7. List, B., Pojarliev, P., and Martin, H.J., Org. Lett. 2001, vol. 3, p. 2423. DOI: 10.1021/ol015799d.

  8. Tsogoeva, S.B. and Wei, S. Chem. Commun. 2006, p. 1451. DOI: 10.1039/B517937H.

    Google Scholar 

  9. Huang, H. and Jacobsen, E.N., J. Am. Chem. Soc. 2006, vol. 128, p. 7170. DOI: 10.1021/ja0620890.

    Article  CAS  Google Scholar 

  10. Xu, Y. and Cordova, A., Chem. Commun., 2006, p. 460. DOI: 10.1039/B514783M.

    Google Scholar 

  11. Luo, S., Mi, X., Zhang, L., Liu, S., Xu, H., and Cheng, J.-P., Angew. Chem., Int. Ed., 2006, vol. 45, p. 3093. DOI: 10.1002/anie.200600048.

    Article  CAS  Google Scholar 

  12. Ishii, T., Fujioka, S., Sekiguchi, Y., and Kotsuki, H., J. Am. Chem. Soc., 2004, vol. 126, p. 9558. DOI: 10.1021/ja046871g.

    Article  CAS  Google Scholar 

  13. Mase, N., Thayumanavan, R., Tanaka, F., and Barbas, C.F., Org. Lett., 2004, vol. 6, p. 2527. DOI: 10.1021/ol049196o.

    Article  CAS  Google Scholar 

  14. Andrey, O., Alexakis, A., Tomassini, A., and Bernardinelli, G., Adv. Synth. Catal., 2004, vol. 346, p. 1147. DOI: 10.1002/adsc.200404037.

    Article  CAS  Google Scholar 

  15. Cobb, A.J.A., Longbottom, D.A., Shaw, D.M., and Ley, S.V., Chem. Commun., 2004, p. 1808. DOI: 10.1039/B409646K.

    Google Scholar 

  16. Reyes, E., Vicario, J.L., Badia, D., and Carrillo, L., Org. Lett. 2006, vol. 8, p. 6135. DOI: 10.1021/ol062627d.

    Article  CAS  Google Scholar 

  17. Cao, C.L., Ye, M.C., Sun, X.L., and Tang, Y., Org. Lett., 2006, vol. 8, p. 2901. DOI: 10.1021/ol060481c.

    Article  CAS  Google Scholar 

  18. Wang, W., Wang, J., and Li, H., Angew. Chem. Int. Ed., 2005, vol. 44, p. 1369. DOI: 10.1002/anie.200461959.

    Article  CAS  Google Scholar 

  19. Wang, J., Li, H., Lou, B., Zu, L., Guo, H., and Wang, W., Chem.-Eur. J. 2006, vol. 12, p. 4321. DOI: 10.1002/chem.200600115.

    Article  CAS  Google Scholar 

  20. Pansare, S.V., and Pandya, K. J. Am. Chem. Soc., 2006, vol. 128, p. 9624. DOI: 10.1021/ja062701n.

  21. Mase, N., Watanabe, K., Yoda, H., Takabe, K., Tanaka, F., and Barbas, C.F., J. Am. Chem. Soc., 2006, vol. 128, p. 4966. DOI: 10.1021/ja060338e.

    Article  CAS  Google Scholar 

  22. Xu, D.-Q., Wang, L.-P., Luo, S.-P., Wang, Y.-F., Zhang, S., and Xu, Z.-Y., Eur. J. Org. Chem., 2008, p. 1049. DOI: 10.1002/ejoc.200700856.

    Google Scholar 

  23. Wang, B-G., Ma, B-C., Wang, Q., and Wang, W., Adv. Synth. Catal., 2010, vol. 352, p. 2923. DOI: 10.1002/adsc.201000508.

    Article  CAS  Google Scholar 

  24. Almasi, D., Alonso, D.A., Bengoa, E.G., Nagel, Y., and Nàjera, C., Eur. J. Org. Chem., 2007, p. 2328. DOI: 10.1002/ejoc.200700031.

    Google Scholar 

  25. Zheng, Z., Perkins, B.L., Ni, Bukuo, J. Am. Chem. Soc., 2010, vol. 132, p. 50. DOI: 10.1021/ja9093583.

    Article  CAS  Google Scholar 

  26. Albrecht, L., Jiang, H., and Jørgensen, K.A., Chem. Eur. J., 2014, vol. 20, p. 358. DOI: 10.1002/chem.201303982.

    Article  CAS  Google Scholar 

  27. Zhang, R., Yin, G., Li, Y., Yan X., and Chen, L. RSC Adv., 2015, vol. 5, p. 3461. DOI: 10.1039/C4RA10684A.

    Article  CAS  Google Scholar 

  28. Lu, D., Gong, Y., and Wang, W., Adv. Synth. Catal. 2010, vol. 352, p. 644. DOI: 10.1002/adsc.200900687.

    Article  CAS  Google Scholar 

  29. Cao, X., Wang, G., Zhang, R., Wei, Y., Wang, W., Sun, H., and Chen, L., Org. Biomol. Chem. 2011, vol. 9, p. 6487. DOI: 10.1039/C1OB05679D.

    Article  CAS  Google Scholar 

  30. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  31. Becke, A.D., J. Chem. Phys. 1993, vol. 98, p. 1372. DOI: org/10.1063/1.464304.

    Article  CAS  Google Scholar 

  32. Becke, A.D., J. Chem. Phys. 1993, vol. 98, p. 5648. DOI: org/10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B 1988, vol. 37, p. 785. DOI: org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  34. Francisco, J.S. and Schlegel, H.B., J. Phys. Chem. 1988, vol. 88, p. 3736. DOI: org/10.1063/1.453873.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Cao.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhang, Y.C., Zhao, J.Q. et al. The highly enantioselective bifunctional organocatalysts for the Michael addition of сyclohexanone to titroolefins. Russ J Gen Chem 86, 1381–1388 (2016). https://doi.org/10.1134/S1070363216060244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216060244

Keywords

Navigation