Skip to main content
Log in

Synthesis and characterization of polythiophene/zinc oxide nanocomposites for chemiresistor organic vapor-sensing application

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, polythiophene (PTh) and a sequence of PTh/(1, 5, 10 wt.%) ZnO composites were prepared by in situ chemical oxidative polymerization method. The successful formation of PTh, ZnO, and interaction between PTh and ZnO were confirmed by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, UV–vis spectroscopy, fluorescence studies, followed by DC electrical conductivity. The XRD spectra showed crystallinity modification for PTh with ZnO wt.%, demonstrating the crystal structure of the sulfur modification. The SEM micrographs showed the existence of randomly linked ZnO nanoparticles, confirming the interaction of ZnO nanoparticles with the polymer matrix. A good agreement was observed in comparison to spectral studies. From the Tauc plot, it was found that the pure PTh bandgap was 2.0 eV and eventually decreased on decreasing the (wt.%) of doping. PTh/10(wt.%) ZnO showed enhanced conductivity (i.e., 0.00982 S cm−1) compared to pure PTh (0.000472 Scm−1). At room temperature (30 °C), the sensing performance was evaluated in terms of percent sensing and response/recovery time. It was noticed that the prepared composites were suitable for acetone sensing. Pure PTh showed 48.40% sensitivity, and sensitivity response for PTh/1(wt.%) ZnO, PTh/5(wt.%) ZnO, and PTh/10(wt.%) ZnO was 55.35%, 58.08%, and 75.11%, respectively. Sensitivity of the PTh/10(wt.%) ZnO composites–based sensors increased more than that of PTh. PTh/10(wt.%) ZnO showed a 122 s response time compared to another fabricated sensor. In reversibility test for PTh/10(wt.%) ZnO, an oscillating trend in sensitivity for four cycles was observed. The sensor’s operating stability was checked over a 16-day period and a fluctuating trend was observed in percentage sensitivity, reversibility, and response/recovery time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 2

Similar content being viewed by others

References

  1. McCullough RD (1998) The Chemistry of Conducting Polythiophenes: from Synthesis to Self-Assembly to Intelligent Materials. Handb. Oligo‐ Polythiophenes 1–44

  2. Okamoto K, Luscombe CK (2011) Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym Chem 2:2424–2434. https://doi.org/10.1039/c1py00171j

    Article  CAS  Google Scholar 

  3. Choudhary RB, Ansari S, Purty B (2020) Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. J Energy Storage 29:101302. https://doi.org/10.1016/j.est.2020.101302

    Article  Google Scholar 

  4. Reddy KR, Hemavathi B, Balakrishna GR et al (2019) Organic conjugated polymer-based functional nanohybrids: synthesis methods, mechanisms and its applications in electrochemical energy storage supercapacitors and solar cells. In: Polymer Composites With Functionalized Nanoparticles. Elsevier 357–379. https://doi.org/10.1016/B978-0-12-814064-2.00011-1

  5. Swathy TS, Jinish Antony M (2020) Tangled silver nanoparticles embedded polythiophene-functionalized multiwalled carbon nanotube nanocomposites with remarkable electrical and thermal properties. Polymer (Guildf) 189:122171. https://doi.org/10.1016/j.polymer.2020.122171

    Article  CAS  Google Scholar 

  6. Iqbal S, Shah J, Kotnala RK, Ahmad S (2019) Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J Alloys Compd 779:487–496. https://doi.org/10.1016/j.jallcom.2018.11.307

    Article  CAS  Google Scholar 

  7. Liu R, Liu Z (2009) Polythiophene: Synthesis in aqueous medium and controllable morphology. Chinese Sci Bull 54:2028–2032. https://doi.org/10.1007/s11434-009-0217-0

    Article  CAS  Google Scholar 

  8. Diaz AF, Crowley J, Bargon J et al (1981) Electrooxidation of aromatic oligomers and conducting polymers. J Electroanal Chem 121:355–361. https://doi.org/10.1016/S0022-0728(81)80592-X

    Article  CAS  Google Scholar 

  9. Sugimoto R, ichi, Takeda S, Gu HB, Yoshino K, (1986) Preparation of Soluble Polythiophene Derivatives Utilizing Transition Metal Halides As Catalysts and Their Property. Chem Express 1:635–638

    CAS  Google Scholar 

  10. Reddy KR, Reddy CV, Babu B et al (2019) Recent advances in layered clays–intercalated polymer nanohybrids: synthesis strategies, properties, and their applications. Modif Clay Zeolite Nanocompos Mater 197–218

  11. Faisal M, Harraz FA, Jalalah M et al (2020) Polythiophene doped ZnO nanostructures synthesized by modified sol-gel and oxidative polymerization for efficient photodegradation of methylene blue and gemifloxacin antibiotic. Mater Today Commun 24:101048. https://doi.org/10.1016/j.mtcomm.2020.101048

    Article  CAS  Google Scholar 

  12. Bayram O (2018) Conjugated polythiophene/Ni doped ZnO hetero bilayer nanocomposite thin films: Its structural, optical and photoluminescence properties. Ceram Int 44:20635–20640. https://doi.org/10.1016/j.ceramint.2018.08.055

    Article  CAS  Google Scholar 

  13. Djuriić AB, Ng AMC, Chen XY (2010) ZnO nanostructures for optoelectronics: Material properties and device applications. Prog Quantum Electron 34:191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  CAS  Google Scholar 

  14. Pourrahimi AM, Liu D, Pallon LKH et al (2014) Water-based synthesis and cleaning methods for high purity ZnO nanoparticles-comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv 4:35568–35577. https://doi.org/10.1039/c4ra06651k

    Article  CAS  Google Scholar 

  15. Husain A, Ahmad S, Mohammad F (2019) Thermally stable and highly sensitive ethene gas sensor based on polythiophene/zirconium oxide nanocomposites. Mater Today Commun 20:100574. https://doi.org/10.1016/j.mtcomm.2019.100574

    Article  CAS  Google Scholar 

  16. Reddy KR, Karthik KV, Prasad SBB et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. https://doi.org/10.1016/j.poly.2016.08.029

    Article  CAS  Google Scholar 

  17. He K, Jin Z, Chu X et al (2019) Fast response–recovery time toward acetone by a sensor prepared with Pd doped WO 3 nanosheets. RSC Adv 9:28439–28450. https://doi.org/10.1039/C9RA04429A

    Article  CAS  Google Scholar 

  18. Husain A, Ahmad S, Mohammad F (2020) Electrical conductivity and alcohol sensing studies on polythiophene/tin oxide nanocomposites. J Sci Adv Mater Devices 5:84–94. https://doi.org/10.1016/j.jsamd.2020.01.002

    Article  Google Scholar 

  19. Chaudhary A, Pathak DK, Tanwar M et al (2019) Polythiophene–PCBM-Based All-Organic Electrochromic Device: Fast and Flexible. ACS Appl Electron Mater 1:58–63. https://doi.org/10.1021/acsaelm.8b00012

    Article  CAS  Google Scholar 

  20. Paul S, Balasubramanian K (2021) Charge transfer induced excitons and nonlinear optical properties of ZnO/PEDOT:PSS nanocomposite films. Spectrochim Acta Part A Mol Biomol Spectrosc 245:118901. https://doi.org/10.1016/j.saa.2020.118901

    Article  CAS  Google Scholar 

  21. Zhu Y, Xu S, Jiang L et al (2008) Synthesis and characterization of polythiophene/titanium dioxide composites. React Funct Polym 68:1492–1498. https://doi.org/10.1016/j.reactfunctpolym.2008.07.008

    Article  CAS  Google Scholar 

  22. Roncali J (2007) Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromol Rapid Commun 28:1761–1775. https://doi.org/10.1002/marc.200700345

    Article  CAS  Google Scholar 

  23. Harraz FA, Faisal M, Jalalah M et al (2020) Conducting polythiophene/α-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl Surf Sci 508:145226. https://doi.org/10.1016/j.apsusc.2019.145226

    Article  CAS  Google Scholar 

  24. H V SPA, Yesappa L et al (2020) Camphor sulfonic acid surfactant assisted polythiophene nanocomposite for efficient electrochemical hydrazine sensor. Mater Res Express 6:125375. https://doi.org/10.1088/2053-1591/ab5ef5

    Article  CAS  Google Scholar 

  25. Dakshayini BS, Reddy KR, Mishra A et al (2019) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J 147:7–24. https://doi.org/10.1016/j.microc.2019.02.061

    Article  CAS  Google Scholar 

  26. Lai CYK, Foot PJS, Brown JW, Spearman P (2017) A urea potentiometric biosensor based on a thiophene copolymer. Biosensors 7:13. https://doi.org/10.3390/bios7010013

    Article  CAS  PubMed Central  Google Scholar 

  27. Husain A, Ahmad S, Ansari SP et al (2021) DC electrical conductivity retention and acetone/acetaldehyde sensing on polythiophene/molybdenum disulphide composites. Polym Polym Compos1–10. https://doi.org/10.1177/09673911211002781

  28. Husain A, Shariq MU, Mohammad F (2020) DC electrical conductivity and liquefied petroleum gas sensing application of polythiophene/zinc oxide nanocomposite. Materialia 9:100599. https://doi.org/10.1016/j.mtla.2020.100599

    Article  CAS  Google Scholar 

  29. Husain A, Ahmad S, Mohammad F (2020) Polythiophene/graphene/zinc tungstate nanocomposite: Synthesis, characterization, DC electrical conductivity and cigarette smoke sensing application. Polym Polym Compos 1–12https://doi.org/10.1177/0967391120929079

  30. Thangamani GJ, Deshmukh K, Nambiraj NA, Pasha SKK (2021) Chemiresistive gas sensors based on vanadium pentoxide reinforced polyvinyl alcohol/polypyrrole blend nanocomposites for room temperature LPG sensing. Synth Met 273:116687. https://doi.org/10.1016/j.synthmet.2020.116687

    Article  CAS  Google Scholar 

  31. Chouhan S, Bhatt R, Bajpai AK et al (2015) Investigation of UV absorption and antibacterial behavior of zinc oxide containing poly(vinyl alcohol-g-acrylonitrile) (PVA-g-PAN) nanocomposites films. Fibers Polym 16:1243–1254. https://doi.org/10.1007/s12221-015-1243-y

    Article  CAS  Google Scholar 

  32. Kulandaivelu P, Sakthipandi K, Senthil Kumar P, Rajendran V (2013) Mechanical properties of bulk and nanostructured La0.61Sr0.39MnO3 perovskite manganite materials. J Phys Chem Solids 74:205–214. https://doi.org/10.1016/j.jpcs.2012.09.008

    Article  CAS  Google Scholar 

  33. Ben AR, Ajili M, Garcia JM et al (2020) First principal investigation of structural, morphological, optoelectronic and magnetic characteristics of sprayed Zn: Fe2O3 thin films. Optik (Stuttg) 219:165303. https://doi.org/10.1016/j.ijleo.2020.165303

    Article  CAS  Google Scholar 

  34. Dutta S, Chattopadhyay S, Sarkar A et al (2009) Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog Mater Sci 54:89–136. https://doi.org/10.1016/j.pmatsci.2008.07.002

    Article  CAS  Google Scholar 

  35. Benhaddou N, Aazou S, Sánchez Y et al (2020) Investigation on limiting factors affecting Cu2ZnGeSe4 efficiency: Effect of annealing conditions and surface treatment. Sol Energy Mater Sol Cells 216:110701. https://doi.org/10.1016/j.solmat.2020.110701

    Article  CAS  Google Scholar 

  36. Wen-Cheun AuB, Tamang A, Knipp D, Chan K-Y (2020) Post-annealing effect on the electrochromic properties of WO3 films. Opt Mater (Amst) 108:110426. https://doi.org/10.1016/j.optmat.2020.110426

    Article  CAS  Google Scholar 

  37. Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Part A Polym Chem 48:1477–1484. https://doi.org/10.1002/pola.23883

    Article  CAS  Google Scholar 

  38. Wu F, Chen J, Chen R et al (2011) Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063. https://doi.org/10.1021/jp1114724

    Article  CAS  Google Scholar 

  39. Tripathi A, Mishra SK, Bahadur I, Shukla RK (2015) Optical properties of regiorandom polythiophene/Al2O3 nanocomposites and their application to ammonia gas sensing. J Mater Sci Mater Electron 26:7421–7430. https://doi.org/10.1007/s10854-015-3373-9

    Article  CAS  Google Scholar 

  40. Khatamian M, Fazayeli M, Divband B (2014) Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites. Mater Sci Semicond Process 26:540–547. https://doi.org/10.1016/j.mssp.2014.04.038

    Article  CAS  Google Scholar 

  41. Zia J, Aazam ES, Riaz U (2020) Highly efficient visible light driven photocatalytic activity of MnO2 and Polythiophene/MnO2 nanohybrids against mixed organic pollutants. J Mol Struct 1207:127790. https://doi.org/10.1016/j.molstruc.2020.127790

    Article  CAS  Google Scholar 

  42. Raghu AV, Jeong HM (2008) Synthesis, characterization of novel dihydrazide containing polyurethanes based on N1, N2-bis [(4-hydroxyphenyl) methylene] ethanedihydrazide and various diisocyanates. J Appl Polym Sci 107:3401–3407. https://doi.org/10.1002/app.27447

    Article  CAS  Google Scholar 

  43. Wang L, Muhammed M (1999) Synthesis of zinc oxide nanoparticles with controlled morphology. J Mater Chem 9:2871–2878. https://doi.org/10.1039/a907098b

    Article  CAS  Google Scholar 

  44. Mazdi NZM, Nordin NA, Rahman NA (2017) Synthesis and Characterisation Of Highly Fluorescent Polythiophene Based Composite Nanofibers. Macromol Symp 371:129–139. https://doi.org/10.1002/masy.201600054

    Article  CAS  Google Scholar 

  45. Coates J (2006) Interpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem. https://doi.org/10.1002/9780470027318.a5606

  46. Talari ACS, Martinez MAG, Movasaghi Z et al (2017) Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 52:456–506. https://doi.org/10.1080/05704928.2016.1230863

    Article  CAS  Google Scholar 

  47. Loh YK, Aldridge S (2020) Acid-Base Free Main Group Carbonyl Analogues. Angew Chemie Int Ed 60:8626–8648. https://doi.org/10.1002/anie.202008174

    Article  CAS  Google Scholar 

  48. Huang YH, Gladysz JA (1988) Aldehyde and ketone ligands in organometallic complexes and catalysis. J Chem Educ 65:298. https://doi.org/10.1021/ed065p298

    Article  CAS  Google Scholar 

  49. Ansari MO, Khan MM, Ansari SA, Cho MH (2015) Polythiophene nanocomposites for photodegradation applications: Past, present and future. J Saudi Chem Soc 19:494–504. https://doi.org/10.1016/j.jscs.2015.06.004

    Article  Google Scholar 

  50. Cugola R, Giovanella U, Di Gianvincenzo P et al (2006) Thermal characterization and annealing effects of polythiophene/fullerene photoactive layers for solar cells. Thin Solid Films 511–512:489–493. https://doi.org/10.1016/j.tsf.2005.12.092

    Article  CAS  Google Scholar 

  51. Naik J, Bhajantri RF, Sheela T, Rathod SG (2018) Role of ZrO2 on physico-chemical properties of PVA/NaClO4 composites for energy storage applications. Polym Compos 39:1273–1282. https://doi.org/10.1002/pc.24063

    Article  CAS  Google Scholar 

  52. Vijeth H, Ashokkumar SP, Yesappa L et al (2018) Flexible and high energy density solid-state asymmetric supercapacitor based on polythiophene nanocomposites and charcoal. RSC Adv 8:31414–31426. https://doi.org/10.1039/c8ra06102e

    Article  CAS  Google Scholar 

  53. Kaloni TP, Giesbrecht PK, Schreckenbach G, Freund MS (2017) Polythiophene: From Fundamental Perspectives to Applications. Chem Mater 29:10248–10283. https://doi.org/10.1021/acs.chemmater.7b03035

    Article  CAS  Google Scholar 

  54. Singh DK, Pandey DK, Yadav RR, Singh D (2012) A study of nanosized zinc oxide and its nanofluid. Pramana - J Phys 78:759–766. https://doi.org/10.1007/s12043-012-0275-8

    Article  CAS  Google Scholar 

  55. Viezbicke BD, Patel S, Davis BE, Birnie DP III (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys status solidi 252:1700–1710. https://doi.org/10.1002/pssb.201552007

    Article  CAS  Google Scholar 

  56. Chatterjee DP, Pakhira M, Nandi AK (2020) Fluorescence in “Nonfluorescent” Polymers. ACS Omega 5:30747–30766. https://doi.org/10.1021/acsomega.0c04700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma Y, Xu Y, Ji X et al (2020) Construction of polythiophene/Bi4O5I2 nanocomposites to promote photocatalytic degradation of bisphenol a. J Alloys Compd 823:153773. https://doi.org/10.1016/j.jallcom.2020.153773

    Article  CAS  Google Scholar 

  58. Xiong HM (2010) Photoluminescent ZnO nanoparticles modified by polymers. J Mater Chem 20:4251–4262. https://doi.org/10.1039/b918413a

    Article  CAS  Google Scholar 

  59. Djurišić AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2:944–961. https://doi.org/10.1002/smll.200600134

    Article  CAS  PubMed  Google Scholar 

  60. Zhao Z, Chen X, Wang Q et al (2019) Sulphur-containing nonaromatic polymers: clustering-triggered emission and luminescence regulation by oxidation. Polym Chem 10:3639–3646. https://doi.org/10.1039/C9PY00519F

    Article  CAS  Google Scholar 

  61. Rafiqi FA, Majid K (2015) Synthesis, characterization, luminescence properties and thermal studies of polyaniline and polythiophene composites with rare earth terbium(III) complex. Synth Met 202:147–156. https://doi.org/10.1016/j.synthmet.2015.01.032

    Article  CAS  Google Scholar 

  62. Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16:1112–1116. https://doi.org/10.1002/adfm.200500573

    Article  CAS  Google Scholar 

  63. Namsheer K, Rout CS (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 11:5659–5697. https://doi.org/10.1039/D0RA07800J

    Article  Google Scholar 

  64. Bachhav SG, Patil DR (2015) Study of polypyrrole-coated MWCNT nanocomposites for ammonia sensing at room temperature. J Mater Sci Chem Eng 3:30. https://doi.org/10.4236/msce.2015.310005

    Article  CAS  Google Scholar 

  65. Husain A, Ahmad S, Mohammad F (2020) Electrical conductivity and ammonia sensing studies on polythiophene/MWCNTs nanocomposites. Materialia 14:100868. https://doi.org/10.1016/j.mtla.2020.100868

    Article  CAS  Google Scholar 

  66. Lim J-C, Jin C, Choi MS et al (2021) Synthesis, morphology, characterisation, and ethanol gas sensing of hierarchical flower-like Co-doped WO3 nanoplates by solvothermal route. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.04.095

    Article  Google Scholar 

  67. Norizan MN, Zulaikha NDS, Norhana AB et al (2021) Carbon nanotubes-based sensor for ammonia gas detection–an overview. Polimery 66:175–186. https://doi.org/10.14314/polimery.2021.3.3

  68. Pei S, Ma S, Xu X et al (2021) Modulated PrFeO3 by doping Sm3+ for enhanced acetone sensing properties. J Alloys Compd 856:158274. https://doi.org/10.1016/j.jallcom.2020.158274

    Article  CAS  Google Scholar 

  69. Tripathi A, Misra KP, Shukla RK (2013) Enhancement in ammonia sensitivity with fast response by doping Al2O3 in polyaniline. J Appl Polym Sci 130:1941–1948. https://doi.org/10.1002/app.39379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Soumya S Bulla honors financial aid form the Karnatak University in the mode of a University Research Student and Department of Science and Technology, Government of Karnataka, India for awarding Research Fellowship under KSTePS scheme (DST)/KSTePS / Ph. D. Fellowship / PHY-04:2018-19). The scholars appreciate USIC (University Scientific Instrumentation Center), and SAIF Karnatak University, Dharwad for offering experimental facilities. With happiness and thankfulness for the funding of UGC-JRF / SRF (518772 / Dec 2015), author Chetan Chavan thanks to University Grants Commission (UGC), New Delhi. The financial support of the Science and Engineering Research Board, Government of India, New Delhi for the research project (SB/EMEQ-089/2013) is also gratefully acknowledged. The authors were also thankful to UGC, New Delhi for SAP-CAS Phase-II programme (F.530/9/CAS-II/2015(SAP-I) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Bhajantri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulla, S.S., Bhajantri, R.F., Chavan, C. et al. Synthesis and characterization of polythiophene/zinc oxide nanocomposites for chemiresistor organic vapor-sensing application. J Polym Res 28, 251 (2021). https://doi.org/10.1007/s10965-021-02618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02618-7

Keywords

Navigation