Skip to main content
Log in

Solvent Selective Polyacrylonitrile Fiber as a Recyclable Catalyst for the Knoevenagel-Michael Reaction in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Heterogeneous catalysis is an important branch of sustainable chemistry. In this work, a series of polyacrylonitrile fiber (PANF) fiber catalysts (PANF-E, PANF-EDs, and PANF-D) with different catalytic micro-environments are developed and characterized by elemental analysis, Fourier-transfer infrared spectroscopy, x-ray diffraction, thermogravimetric/differential scanning calorimetry analysis, scanning electron microscopy, and mechanical strength measurements to demonstrate the successful immobilization of the different amines as well as evaluate the physical strength and thermal stability of the fiber catalysts at different stages. The catalytic activities of the fiber catalysts are tested by one-pot three-component Knoevenagel-Michael reaction to the synthesis of substituted 2-amino-4H-chromenes in which the influences of surface polarities, kinds and proportions of functional groups on the fiber catalysts activities were investigated. Among the prepared catalysts, the PANF-D with higher density of tertiary amino group and hydrophilic micro-environment exhibited the best catalytic activity to efficiently catalyze the three-component reaction in water with excellent substrate suitability (92-98%). In addition, the catalyst can be easily separated from the catalytic system and conveniently reused at least ten times. Moreover, the PANF-D performs well in scaled-up experiment in a simple fixed-bed reactor with a yield of 97% which allows it to have great potential for further cleaner industrial applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Náray-Szabó G, Mika LT (2018) Green Chem 20:2171–2191

    Article  Google Scholar 

  2. Collins TJ (2017) J Clean Prod 140:93–110

    Article  CAS  Google Scholar 

  3. Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ (2018) Green Chem 20:5082–5103

    Article  CAS  Google Scholar 

  4. Giraud RJ, Williams PA, Sehgal A, Ponnusamy E, Phillips AK, Manley JB (2014) ACS Sustain Chem Eng 2:2237–2242

    Article  CAS  Google Scholar 

  5. Poliakoff M, Licence P (2007) Nature 450:810–812

    Article  PubMed  CAS  Google Scholar 

  6. Dong J, Cui P, Shi PF, Cheng P, Zhao B (2015) J Am Chem Soc 137:15988–15991

    Article  PubMed  CAS  Google Scholar 

  7. Dworakowska S, Tiozzo C, Niemczyk-Wrzeszcz M, Michorczyk P, Ravasio N, Psaro R, Bogdał D, Guidotti M (2017) J Clean Prod 166:901–909

    Article  CAS  Google Scholar 

  8. Bahrami K, Sheikh, Arabi M (2016) New J Chem 40:3447–3455

    Article  CAS  Google Scholar 

  9. Mutz B, Belimov M, Wang W, Sprenger P, Serrer M-A, Wang D, Pfeifer P, Kleist W, Grunwaldt J-D (2017) ACS Catal 7:6802–6814

    Article  CAS  Google Scholar 

  10. Nasrollahzadeh M, Motahharifar N, Ghorbannezhad F, Soheili Bidgoli NS, Baran T, Varma RS (2020) Mol Catal 480:110645

    Article  CAS  Google Scholar 

  11. Wang X, Zhang L, Guo Z, Shi Y, Zhou Y, Wang J (2019) Appl Surf Sci 478:221–229

    Article  CAS  Google Scholar 

  12. Schulze JS, Migenda J, Becker M, Schuler SMM, Wende RC, Schreiner PR, Smarsly BM (2020) J Mater Chem A 8:4107–4117

    Article  CAS  Google Scholar 

  13. Lim S, Yap CY, Pang YL, Wong KH (2020) J Hazard Mater 390:121532

    Article  PubMed  CAS  Google Scholar 

  14. Zhu C, Wang H, Li H, Cai B, Lv W, Cai C, Wang C, Yan L, Liu Q, Ma L (2019) ACS Sustain Chem Eng 7:19556–19569

    Article  CAS  Google Scholar 

  15. McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275–3300

    Article  PubMed  CAS  Google Scholar 

  16. Trost BM, Warner RW (1982) J Am Chem Soc 104:6112–6114

    Article  CAS  Google Scholar 

  17. Trost BM, Keinan E (1978) J Am Chem Soc 100:7779–7781

    Article  CAS  Google Scholar 

  18. Zhang L, Li Z, Chang R, Chen Y, Zhang W (2009) React Funct Polym 69:234–239

    Article  CAS  Google Scholar 

  19. Parlayıcı Ş, Yar A, Pehlivan E, Avcı A (2019) J Anal Sci Technol 10:24

    Article  Google Scholar 

  20. Tao R, Yang S, Shao C, Li X, Li X, Liu S, Zhang J, Liu Y (2019) ACS Appl Nano Mater 2:3081–3090

    Article  CAS  Google Scholar 

  21. Xu W, Zheng W, Wang F, Xiong Q, Shi X-L, Kalkhajeh YK, Xu G, Gao H (2021) Chem Eng J 403:126349

    Article  CAS  Google Scholar 

  22. Chen G, Xu Y, Shi T, Wu X, Zhang X, Wen R, Liu Y, Fang M, Min X, Huang Z (2019) Mater Res Express 6:095502

    Article  CAS  Google Scholar 

  23. Mu S, Guo J, Yu Y, An Q, Zhang S, Wang D, Chen S, Huang X, Li S (2016) Energy Convers Manage 110:176–183

    Article  CAS  Google Scholar 

  24. Chang L, Zhang X, Shi X, Zhao L, Liu X (2014) Fibers Polym 15:2026–2031

    Article  CAS  Google Scholar 

  25. Shen X, Ji Y, Wang J (2008) J Appl Polym Sci 110:313–320

    Article  CAS  Google Scholar 

  26. Li P, Du J, Xie Y, Tao M, Zhang W-Q (2016) ACS Sustain Chem Eng 4:1139–1147

    Article  CAS  Google Scholar 

  27. Xu G, Wang L, Li M, Tao M, Zhang W (2017) Green Chem 19:5818–5830

    Article  CAS  Google Scholar 

  28. Xiao J, Wang L, Ran J, Zhao J, Ma N, Tao M, Zhang W (2020) J Clean Prod 274:122473

    Article  CAS  Google Scholar 

  29. Xu G, Wang L, Li M, Tao M, Zhang W (2017) Green Chem. 19:5818–5830

    Article  CAS  Google Scholar 

  30. Du J, Xu G, Lin H, Wang G, Tao M, Zhang W (2016) Green Chem. 18:2726–2735

    Article  CAS  Google Scholar 

  31. Li P, Liu Y, Wang L, Xiao J, Tao M (2018) Adv Synth Catal 360:1673–1684

    Article  CAS  Google Scholar 

  32. Li P, Mi L, Liu Y, Zhang W, Shi X-L (2020) J Indus Eng Chem 81:323–331

    Article  CAS  Google Scholar 

  33. Afifi TH, Okasha RM, Alsherif H, Ahmed HEA, Abd-El-Aziz AS (2017) Curr Org Synth 14:1036–1051

    Article  CAS  Google Scholar 

  34. Aminkhani A, Talati M, Sharifi R, Chalabian F, Katouzian F (2019) J Heterocycl Chem 56:1812–1819

    Article  CAS  Google Scholar 

  35. Dekamin MG, Eslami M (2014) Green Chem 16:4914–4921

    Article  CAS  Google Scholar 

  36. Zolfigol MA, Khazaei A, Moosavi-Zare AR, Afsar J, Khakyzadeh V, Khaledian O (2015) J Chin Chem Soc 62:398–403

    Article  CAS  Google Scholar 

  37. Devi I, Bhuyan PJ (2004) Tetrahedron Lett 45:8625–8627

    Article  CAS  Google Scholar 

  38. Sandhu J, Saini A, Kumar S (2006) Synlett 2006:1928–1932

    Article  Google Scholar 

  39. Seshu Babu N, Pasha N, Venkateswara Rao KT, Sai Prasad PS, Lingaiah N (2008) Tetrahedron Lett 49:2730–2733

    Article  Google Scholar 

  40. Balalaie S, Ramezanpour S, Bararjanian M, Gross JH (2008) Synth Commun 38:1078–1089

    Article  CAS  Google Scholar 

  41. Pourhasan B, Mohammadi-Nejad A (2019) J Chin Chem Soc 66:1356–1362

    Article  CAS  Google Scholar 

  42. Monadi N, Moradi E (2018) Trans Met Chem 43:161–170

    Article  CAS  Google Scholar 

  43. Yao H, Song N, Shi K, Feng S, Zhu S, Zhang Y, Guan S (2016) Polym Chem 7:4728–4735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the Natural Science Foundation of Henan Province (212300410318). Fundamental Research Funds of Zhongyuan University of Technology (K2020QN008), National Natural Science Foundation of China (21802034). Collaborative Innovation Centre of Henan Textile and Clothing Industry, Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant Nos. 164100510007 and CXTD2015018), and Zhengzhou University (Grant Nos. 1421316035 and 2016xjxm258), Program for interdisciplinary Direction Team in Zhongyuan University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengyu Li or Weihua Chen.

Ethics declarations

Conflict of interest

There has no conflict of interest for each contributing author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10562_2021_3593_MOESM1_ESM.docx

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org. The supporting material contains the experimental details, the characterization data of compounds and the copies of 1H NMR (DOCX 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yang, Y., Wu, X. et al. Solvent Selective Polyacrylonitrile Fiber as a Recyclable Catalyst for the Knoevenagel-Michael Reaction in Water. Catal Lett 152, 43–54 (2022). https://doi.org/10.1007/s10562-021-03593-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03593-w

Keywords

Navigation