Skip to main content
Log in

Influence of Surface Polarity on Catalytic Properties of Aminopyridine Functionalized Polyacrylonitrile Fiber Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work has been developed to study the effect of fiber catalyst surface polarity on catalyst performance. Taking 4-dimethyl amine pyridine (DMAP) derivative functionalized polyacrylonitrile fiber catalyst (PANDMAPF) as the template catalyst, its surface property was adjusted through the introduction of phenyl and hydroxyl groups on PANDMAPF. Elemental analysis (EA), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and mechanical strength test are used to characterize and demonstrate the successful synthesis of different fiber catalysts. The catalytic performance of different fiber catalysts was tested by the reaction of one-pot three-component synthesis 2-amino-2-chromenes. The results showed that reducing the surface polarity of the catalyst could not only improve the activity of the catalyst, but also make the three-component reaction which could only be carried out in high polar solvents (water and methanol), but also proceed effectively in lower polar solvents (such as ethanol and n-butanol). Therefore, the activity and selectivity of the catalyst can be effectively regulated by introducing different polar auxiliary functional groups on the surface of the fiber catalyst, which provides a theoretical basis for the design and synthesis of high activity and selectivity fiber catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1.
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L (2016) Green Chem 18:3471–3493

    CAS  Google Scholar 

  2. Schulze JS, Migenda J, Becker M, Schuler SMM, Wende RC, Schreiner PR, Smarsly BM (2020) J Mate Chem A 8:4107–4117

    CAS  Google Scholar 

  3. Wang X, Zhu L, Zhuo Y, Zhu Y, Wang S (2019) ACS Sustain Chem Eng 7:14647–14660

    CAS  Google Scholar 

  4. Gogoi P, Dutta AK, Saikia S, Borah R (2016) Appl Catal A 523:321–331

    CAS  Google Scholar 

  5. Mutz B, Belimov M, Wang W, Sprenger P, Serrer M-A, Wang D, Pfeifer P, Kleist W, Grunwaldt J-D (2017) ACS Catal 7:6802–6814

    CAS  Google Scholar 

  6. Baran T (2017) J Mol Struct 1141:535–541

    CAS  Google Scholar 

  7. Pan S, Yan S, Osako T, Uozumi Y (2017) ACS Sustain Chem Eng 5:10722–10734

    CAS  Google Scholar 

  8. Liu G-H, Zong Z-M, Liu Z-Q, Liu F-J, Zhang Y-Y, Wei X-Y (2018) Fuel Process Technol 179:114–123

    CAS  Google Scholar 

  9. Liu S, Fu X, Dai J, Liu Z, Zhu L, Hu C (2019) Catalysts 9:445

    CAS  Google Scholar 

  10. Zhang T, Zhou J, Chen Y, Li Y (2018) Res Chem Intermed 44:5329–5344

    CAS  Google Scholar 

  11. Rostamnia S, Gholipour B, Liu X, Wang Y, Arandiyan H (2018) J Colloid Interface Sci 511:447–455

    CAS  PubMed  Google Scholar 

  12. Badoga S, Sohani K, Zheng Y, Dalai AK (2017) Fuel Process Technol 168:140–151

    CAS  Google Scholar 

  13. Fang L, Wang G, Guo W (2017) Colloids Surf A 533:204–212

    CAS  Google Scholar 

  14. McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275–3300

    CAS  PubMed  Google Scholar 

  15. Trost BM, Warner RW (1982) J Am Chem Soc 104:6112–6114

    CAS  Google Scholar 

  16. Trost BM, Keinan E (1978) J Am Chem Soc 100:7779–7781

    CAS  Google Scholar 

  17. Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A (2007) React Funct Polym 67:184–201

    CAS  Google Scholar 

  18. Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stab 92:1421–1432

    CAS  Google Scholar 

  19. Yarahmadi A, Madrakian T, Afkhami A, Jalal NR (2019) J Electrochem Soc 166:B1268–B1275

    CAS  Google Scholar 

  20. Li Y, Abedalwafa MA, Ni C, Sanbhal N, Wang L (2019) React Funct Polym 138:18–28

    CAS  Google Scholar 

  21. Zheng Y, Zhao W, Jia D, Cui L, Liu J (2019) Chem Eng J 364:70–78

    CAS  Google Scholar 

  22. Zhang Y, Sun Y, Peng L, Yang J, Jia H, Zhang Z, Shan B, Xie J (2019) Energy Storage Mater 21:287–296

    Google Scholar 

  23. Chen G, Xu Y, Shi T, Wu X, Zhang X, Wen R, Liu Y, Fang M, Min X, Huang Z (2019) Mater Res Express 6:095502

    CAS  Google Scholar 

  24. Ju P, Liu Q, Zhang H, Chen R, Liu J, Yu J, Liu P, Zhang M, Wang J (2019) Chem Eng J 374:1204–1213

    CAS  Google Scholar 

  25. Jia Z, Hao S, Cheng X, Lu X, Tu L (2019) Desalin Water Treat 163:125–132

    CAS  Google Scholar 

  26. Xu W, Zheng W, Wang F, Xiong Q, Shi X-L, Kalkhajeh YK, Xu G, Gao H (2021) Chem Eng J 403:126349

    CAS  Google Scholar 

  27. Xing G (2016) Fibers Polym 17:194–198

    CAS  Google Scholar 

  28. Mooste M, Kibena-Põldsepp E, Vassiljeva V, Merisalu M, Kook M, Treshchalov A, Kisand V, Uibu M, Krumme A, Sammelselg V, Tammeveski K (2019) J Mater Sci 54:11618–11634

    CAS  Google Scholar 

  29. Shi X-L, Sun B, Hu Q, Liu K, Li P, Wang J (2020) Chem Commun 56:11390–11393

    CAS  Google Scholar 

  30. Xu G, Jin M, Kalkhajeh YK, Wang L, Tao M, Zhang W (2019) J Cleaner Prod 231:77–86

    CAS  Google Scholar 

  31. Shi X-L, Sun B, Hu Q, Liu K, Li P (2020) Liu B Chem Eng J 395:125084

    CAS  Google Scholar 

  32. Li P, Liu Y, Cao J, Tao M, Zhang W (2017) ChemCatChem 9:3725–3732

    CAS  Google Scholar 

  33. Li P, Du J, Xie Y, Tao M, Zhang W-Q (2016) ACS Sustain Chem Eng 4:1139–1147

    CAS  Google Scholar 

  34. Li P, Mi L, Liu Y, Zhang W, Shi X-L (2020) J Ind Eng Chem 81:323–331

    CAS  Google Scholar 

  35. Zhen Y, Lin H, Wang S, Tao M (2014) RSC Adv 4:26122–26128

    CAS  Google Scholar 

  36. Du J, Shuai B, Tao M, Wang G, Zhang W (2016) Green Chem 18:2625–2631

    CAS  Google Scholar 

  37. Li P, Liu Y, Ma N, Zhang W (2018) Catal Lett 148:813–823

    CAS  Google Scholar 

  38. Li P, Liu Y, Wang L, Xiao J, Tao M (2018) Adv Synth Catal 360:1673–1684

    CAS  Google Scholar 

  39. Cao J, Xu G, Li P, Tao M, Zhang W (2017) ACS Sustain Chem Eng 5:3438–3447

    CAS  Google Scholar 

  40. Shi X-L, Lin H, Li P, Zhang W (2014) ChemCatChem 6:2947–2953

    CAS  Google Scholar 

  41. Du J, Xu G, Lin H, Wang G, Tao M, Zhang W (2016) Green Chem 18:2726–2735

    CAS  Google Scholar 

  42. Yao H, Song N, Shi K, Feng S, Zhu S, Zhang Y, Guan S (2016) Polym Chem 7:4728–4735

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 21671205, 21771164, U1407103 and 21802034). Natural Science Foundation of Henan Province (182300410143). Collaborative Innovation Centre of Henan Textile and Clothing Industry, Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant Nos. 164100510007 and CXTD2015018), and Zhengzhou University (Grant Nos. 1421316035 and 2016xjxm258), Program for interdisciplinary Direction Team in Zhongyuan University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengyu Li or Yu Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 634kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yang, Y., Mi, L. et al. Influence of Surface Polarity on Catalytic Properties of Aminopyridine Functionalized Polyacrylonitrile Fiber Catalyst. Catal Lett 151, 2056–2064 (2021). https://doi.org/10.1007/s10562-020-03443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03443-1

Keywords

Navigation