Skip to main content
Log in

Generation of Strong Basic Sites on Polyacrylonitrile Fiber as Catalysts for Oxidation of Methylene Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Heterogeneous solid base catalysts have attracted widespread attention for various reactions from the perspective of green and economy chemistry due to their advantages such as low corrosiveness, high reaction efficiency, and easy separation. The unique properties of polyacrylonitrile fibers (PANF) such as good mechanical strength and a surface rich in cyanine and economy make them suitable catalytic supports. Herein, potassium oxide was introduced into PANF by redox strategy. Characterization using XRD, FT-IR, solid-state 13C NMR, XPS, SEM, CO2-TPD, etc. confirmed the successful preparation of this heterogeneous base catalyst and the participation of PANF in the redox process of KNO3 to promote the decomposition of KNO3. The acquired catalyst showed obvious activity for the oxidation of methylene compounds and the yield of fluorenones can reach 100% at 100 °C. This strategy provides a new development path for the application of PANF and the synthesis of heterogeneous bases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raytchev PD, Bendjeriou A, Dutasta J-P, Martinez A, Dufaud V (2011) Adv Synth Catal 353:2067–2077

    Article  CAS  Google Scholar 

  2. Puthiaraj P, Pitchumani K (2014) Chemistry 20:8761–8770

    Article  CAS  PubMed  Google Scholar 

  3. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF (2014) Science 345:546–550

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916

    Article  CAS  PubMed  Google Scholar 

  5. Wilson K, Lee AF (2012) Catal Sci Technol 2:884–897

    Article  CAS  Google Scholar 

  6. Luo Q-X, Song X-D, Ji M, Park S-E, Hao C, Li Y-Q (2014) Appl Catal A 478:81–90

    Article  CAS  Google Scholar 

  7. Sun LB, Gu FN, Chun Y, Yang J, Wang Y, Zhu JH (2008) J Phys Chem C 112:4978–4985

    Article  CAS  Google Scholar 

  8. Lu X, Shi S, Zhu G, Zhao L, Wang M, Gao J, Du Z, Xu J (2020) ChemistrySelect 5:549–553

    Article  CAS  Google Scholar 

  9. Sun Y-H, Sun L-B, Li T-T, Liu X-Q (2010) J Phys Chem C 114:18988–18995

    Article  CAS  Google Scholar 

  10. Sun L-B, Sun Y-H, Liu X-D, Zhu L, Liu X-Q (2014) Curr Org Chem 18:1296–1304

    Article  CAS  Google Scholar 

  11. Wu ZY, Jiang Q, Wang YM, Wang HJ, Sun LB, Shi LY, Xu JH, Wang Y, Chun Y, Zhu JH (2006) Chem Mater 18:4600–4608

    Article  CAS  Google Scholar 

  12. Zhu G, Shi S, Liu M, Zhao L, Wang M, Zheng X, Gao J, Xu J (2018) ACS Appl Mater Interfaces 10:12612–12617

    Article  CAS  PubMed  Google Scholar 

  13. Kawabata H, Hayashi M (2004) Tetrahedron Lett 45:5457–5459

    Article  CAS  Google Scholar 

  14. Hayashi E, Tamura T, Aihara T, Kamata K, Hara M (2022) ACS Appl Mater Interfaces 14:6528–6537

    Article  CAS  PubMed  Google Scholar 

  15. Zhou L, Lu T, Xu J, Chen M, Zhang C, Chen C, Yang X, Xu J (2012) Microporous Mesoporous Mater 161:76–83

    Article  CAS  Google Scholar 

  16. Mahyari M, Laeini MS, Shaabani A (2014) Chem Commun (Camb) 50:7855–7857

    Article  CAS  PubMed  Google Scholar 

  17. Nie S, Wang J, Huang X, Niu X, Zhu L, Yao X (2018) ACS Appl Nano Mater 1:6567–6574

    Article  CAS  Google Scholar 

  18. Kuwahara Y, Yoshimura Y, Yamashita H (2017) Dalton Trans 46:8415–8421

    Article  CAS  PubMed  Google Scholar 

  19. Gibson LT (2014) Chem Soc Rev 43:5173–5182

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zhang J, Li P, Yang Y, Ai W, Liu Y, Zhang W (2022). ChemistrySelect. https://doi.org/10.1002/slct.202201247

    Article  Google Scholar 

  21. Li P, Du J, Xie Y, Tao M, Zhang W-Q (2016) ACS Sustain Chem Eng 4:1139–1147

    Article  CAS  Google Scholar 

  22. Li G, Xiao J, Zhang W (2012) Green Chem 14:2234–2242

    Article  CAS  Google Scholar 

  23. Farsani RE, Raissi S, Shokuhfar A, Sedghi A (2009) Int J Mech Mechatron Eng 3:161–164

    Google Scholar 

  24. Li P, Liu Y, Wang L, Tao M, Zhang W (2018) J Appl Polym Sci 135:45992

    Article  Google Scholar 

  25. Sun LB, Gong L, Liu XQ, Gu FN, Chun Y, Zhu JH (2009) Catal Lett 132:218–224

    Article  CAS  Google Scholar 

  26. Li P, Liu Y, Cao J, Tao M, Zhang W (2017) ChemCatChem 9:3725–3732

    Article  CAS  Google Scholar 

  27. Zhang X, Ji X, Jiang S, Liu L, Weeks BL, Zhang Z (2011) Green Chem 13:1891–1896

    Article  CAS  Google Scholar 

  28. Shi S, Liu M, Zhao L (2017) Chemistry 12:2404–2409

    CAS  Google Scholar 

  29. Zhao L, Shi S, Liu M, Zhu G, Wang M, Du W, Gao J, Xu J (2018) Green Chem 20:1270–1279

    Article  CAS  Google Scholar 

  30. Zhang C, Wang F (2023) Chem Rev 123:4510–4601

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Wang F (2017) Chin J Catal 38:1102–1107

    Article  CAS  Google Scholar 

  32. Tian H-R, Liu Y-W, Zhang Z, Liu S-M, Dang T-Y, Li X-H, Sun X-W, Lu Y, Liu S-X (2020) Green Chem 22:248–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the following funds: National Key Research and Development Program of China (Grant No. 2022YFA1504900), National Natural Science Foundation of China (Grant Nos. 22072147, 22372168), the Youth Innovation Promotion Association, the Chinese Academy of Sciences (Grant No. 2021178) and Dalian Innovation Support Plan for High Level Talents (Grant No. 2020RT10). Thanks to Prof. Jie Xu and Prof Jin Gao for their guidance and help.

Funding

Funding was provided by Youth Innovation Promotion Association, the Chinese Academy of Sciences (Grant No. 2021178), National Natural Science Foundation of China (Grant Nos. 22072147, 22372168), National Key Research and Development Program of China (Grant No. 2022YFA1504900), Dalian Innovation Support Plan for High Level Talents (Grant No. 2020RT10).

Author information

Authors and Affiliations

Authors

Contributions

SS and XW designed the research. XZ performed the catalytic reaction, established analysis method and completed the paper. YW, XF, JC, XG, WY participated in beneficial discussions. General guidance was done by SS. All authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Xinhong Wang or Song Shi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11241 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wang, Y., Feng, X. et al. Generation of Strong Basic Sites on Polyacrylonitrile Fiber as Catalysts for Oxidation of Methylene Compounds. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04633-x

Keywords

Navigation