Skip to main content
Log in

Acid–Base Bifunctional Fiber as Highly Active Catalyst for the Tandem Deprotection-Knoevenagel Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A serious of phenol and amine bifunctionalized polyacrylonitrile fibers have been prepared and used to catalyze the tandem deprotection-Knoevenagel reaction. Among them, the phenol and tertiary amine bifunctionalized polyacrylonitrile fiber (PANP-TAF) achieved the best catalysis activity. The PANP-TAF was characterized by Fourier-transfer infrared spectroscopy (FTIR), X-ray diffraction spectra (XRD) and elemental analysis (EA). The PANP-TAF can efficiently catalyze Knoevenagel condensation reaction of aromatic aldehydes and methyl cyanoacetateethyl cyanoacetate or malononitrile with high yields of 85%-99% and extensive substrate scope in water. Moreover, the PANP-TAF shows excellent reusablity (up to 15 times) without significant decrease of catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Scheme 4

Similar content being viewed by others

References

  1. Ke SC, Chang GG, Hu ZY, Tian G, Yang DW, Ma XC, Huang KX, Li JX, Yang XY (2020) Integrated-trifunctional single catalyst with fine spatial distribution via stepwise anchored strategy for multistep autotandem catalysis. ACS Sustain Chem Eng 8(2):485–546

    Article  Google Scholar 

  2. Zhang F, Jiang HY, Li XY, Wu XT, Li HX (2013) Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot cascade reactions. ACS Catal 4(2):394–401

    Article  Google Scholar 

  3. Zhang WF, Zhao QS, Liu T, Gao Y, Li Y, Zhang GL, Zhang FB, Fan XB (2014) Phosphotungstic acid immobilized on amine-grafted graphene oxide as acid/base bifunctional catalyst for one-pot tandem reaction. Ind Eng Chem Res 53(4):1437–1441

    Article  CAS  Google Scholar 

  4. Ge T, Hua Z, Zhu Y, Song Y, Tao G, Zhou X, Shi J (2014) Amine-modified hierarchically structured zeolites as acid–base bi-functional catalysts for one-pot deacetalization-Knoevenagel cascade reaction. RSC Adv 4(110):64871–64876

    Article  ADS  CAS  Google Scholar 

  5. Cai M, Wang X, Fang Y, Chen Y, Dai L (2021) Robust Mg(Ca)Zr-doped acid–base bifunctional mesoporous silica and their applications in the deacetalization-Knoevenagel reaction. Inorg Chem 60(12):8924–8935

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Liu S, Lv H, Qin Q, Zhang X (2022) Nanoporous {Y2}-organic frameworks for excellent catalytic performance on the cycloaddition reaction of epoxides with CO2 and Deacetalization-Knoevenagel condensation. ACS Appl Mater Interfaces 14(16):18589–18599

    Article  CAS  PubMed  Google Scholar 

  7. Seal N, Neogi S (2022) Lewis acid-base integrated robust metal-organic framework and reconfigurable composite for solvent-free Biginelli condensation and tandem catalysis with size selectivity. Mater Today Chem 26:101064

    Article  CAS  Google Scholar 

  8. Guan J, Liu B, Yang X, Hu J, Wang C, Kan Q (2014) Immobilization of proline onto Al-SBA-15 for C-C bond-forming reactions. ACS Sustain Chem Eng 2(4):925–933

    Article  CAS  Google Scholar 

  9. Shang F, Sun J, Wu S, Yang Y, Kan Q, Guan J (2010) Direct synthesis of acid–base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in Deacetalization-Knoevenagel reactions. Microporous Mesoporous Mater 134(1–3):44–50

    Article  CAS  Google Scholar 

  10. Shi X, Jiang L, Sun B, Liu S, Du M, Hu Q, Liu B (2021) Tuning acid–base cooperativity to create bifunctional fiber catalysts for one-pot tandem reactions in water. React Chem Eng 6(12):2280–2291

    Article  CAS  Google Scholar 

  11. Wang Z, Yuan X, Cheng QA, Zhang T, Luo J (2018) An efficient and recyclable acid–base bifunctional core–shell nano-catalyst for the one-pot deacetalization–Knoevenagel tandem reaction. New J Chem 42(14):11610–11615

    Article  CAS  Google Scholar 

  12. Gianotti E, Diaz U, Velty A, Corma A (2013) Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catal Sci Technol 3(10):2677

    Article  CAS  Google Scholar 

  13. Lee Y, Do XH, Hwang SS, Baek K (2021) Dual-functionalized ZIF-8 as an efficient acid-base bifunctional catalyst for the one-pot tandem reaction. Catal Today 359:124–132

    Article  CAS  Google Scholar 

  14. Zhang Y, Chen Y, Pan J, Liu M, Jin P, Yan Y (2017) Synthesis and evaluation of acid-base bi-functionalized SBA-15 catalyst for biomass energy conversation. Chem Eng J 313:1593–1606

    Article  CAS  Google Scholar 

  15. Srinivas D, Ratnasamy P (2007) Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties. Microporous Mesoporous Mater 105(1–2):170–180

    Article  CAS  Google Scholar 

  16. Hruby SL, Shanks BH (2009) Acid–base cooperativity in condensation reactions with functionalized mesoporous silica catalysts. J Catal 263(1):181–188

    Article  CAS  Google Scholar 

  17. Zhang F, Jiang H, Li X, Wu X, Li H (2014) Amine-functionalized GO as an active and reusable acid–base bifunctional catalyst for one-pot cascade reactions. ACS Catal 4(2):394–401

    Article  CAS  Google Scholar 

  18. Zhang W, Gu H, Li Z, Zhu Y, Li Y, Zhang G, Fan X (2014) General acid and base bifunctional graphene oxide for cooperative catalysis. J Mater Chem A 2(26):10239–10243

    Article  CAS  Google Scholar 

  19. Li Y, Zhao Q, Ji J, Zhang G, Zhang F, Fan X (2013) Cooperative catalysis by acid–base bifunctional graphene. RSC Adv 3(33):13655

    Article  ADS  CAS  Google Scholar 

  20. Saptal VB, Nanda B, Parida KM, Bhanage BM (2017) Fabrication of amine and zirconia on MCM-41 as acid-base catalysts for the fixation of carbon dioxide. ChemCatChem 9(21):4105–4111

    Article  CAS  Google Scholar 

  21. Xue B, Xu J, Liu P, Lv L, Xu C, Li Y, Zhang K (2012) Acid–base properties of TiO2-modified MCM-41 mesoporous silica and its catalytic performance for ortho-selective ethylation of phenol with diethyl carbonate. J Mol Catal A- Chemical 357:50–58

    Article  ADS  CAS  Google Scholar 

  22. Shang F, Sun J, Liu H, Wang C, Guan J, Kan Q (2012) One-pot cascade reactions catalyzed by acid–base mesoporous MCM-41 materials. Mater Res Bull 47(3):801–806

    Article  CAS  Google Scholar 

  23. Long Y, Xie M, Niu J, Wang P, Ma J (2013) Preparation of acid–base bifunctional core–shell structured Fe3O4@SiO2 nanoparticles and their cooperative catalytic activity. Appl Surf Sci 277:288–292

    Article  ADS  CAS  Google Scholar 

  24. Liu L, Ai Y, Li D, Qi L, Zhou J, Tang Z, Sun H (2017) Recyclable acid-base bifunctional core-shell-shell nanosphere catalyzed synthesis of 5-aryl-1H -1,2,3-triazoles through the “one-pot” cyclization of aldehydes, nitromethane, and sodium azide. ChemCatChem 9(16):3131–3137

    Article  CAS  Google Scholar 

  25. Li H, Fang Z, Yang S (2016) Direct conversion of sugars and ethyl levulinate into γ-valerolactone with superparamagnetic acid–base bifunctional ZrFeOx nanocatalysts. ACS Sustainable Chem Eng 4(1):236–246

    Article  CAS  Google Scholar 

  26. Gupta AK, Guha N, Krishnan S, Mathur P, Rai DK (2020) A three-dimensional Cu(II)-MOF with Lewis acid−base dual functional sites for chemical fixation of CO2 via cyclic carbonate synthesis. J of CO2 Util. https://doi.org/10.1016/j.jcou.2020.101173

    Article  Google Scholar 

  27. Cirujano FG, Martín N, Fu G, Jia C, De Vos D (2020) Cooperative acid–base bifunctional ordered porous solids in sequential multi-step reactions: MOFvs. mesoporous silica. Catal Sci Technol 10(6):1796–1802

    Article  CAS  Google Scholar 

  28. Yang Y, Yao H, Xi F, Gao E (2014) Amino-functionalized Zr(IV) metal–organic framework as bifunctional acid–base catalyst for Knoevenagel condensation. J Mol Catal A- Chemical 390:198–205

    Article  CAS  Google Scholar 

  29. Xamena Llabrés I, Francisco X, Cirujano FG, Corma A (2012) An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous Mesoporous Mater 157:112–117

    Article  Google Scholar 

  30. Dhakshinamoorthy A, Heidenreich N, Lenzenb D, Stock N (2017) Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures. CrystEngComm 19(29):4187–4193

    Article  CAS  Google Scholar 

  31. Ubu N, Maheswari R, Elamathi V, Varalakshmi P, Dhakshinamoorthy A (2020) Chitosan as a biodegradable heterogeneous catalyst for Knoevenagel condensation between benzaldehydes and cyanoacetamide. Catal Commun. https://doi.org/10.1016/j.catcom.2020.105954

    Article  Google Scholar 

  32. Aubu N, Hariharan S, Dhakshinamoorthy A (2020) Knoevenagel-doebner condensation promoted by chitosan as a reusable solid base catalyst. Mol Catal 484:110744

    Article  Google Scholar 

  33. Deshayes G, Poelmans K, Verbruggen I, Camacho-Camacho C, Degée P, Pinoie V, Dubois P (2005) Polystyrene-supported organotin dichloride as a recyclable catalyst in lactone ring-opening polymerization: assessment and catalysis monitoring by high-resolution magic-angle-spinning NMR spectroscopy. Chem Eur J 11(15):4552–4561

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z, Li Q, Xiao Y, Zhang C, Fu Z, Liu Y, Yin D (2019) Acid–base synergistic catalysis of biochar sulfonic acid bearing polyamide for microwave-assisted hydrolysis of cellulose in water. Cellulose 26(2):751–762

    Article  CAS  Google Scholar 

  35. Rud DA, Kushakova NS, Shapovalov AV, Naumkin AV, Zhidkova IV, Khotina IA (2010) Polyphenylens, cross-linked through Pd-carbene complexes formation, for catalysis in Suzuki-Miyaura reactions. Macromol Symp 296(1):388–391

    Article  CAS  Google Scholar 

  36. Cao J, Xu G, Li P, Tao M, Zhang W (2017) Polyacrylonitrile fiber supported N-heterocyclic carbene Ag(I) as efficient catalysts for three-component coupling and intramolecular 1,3-dipolar cycloaddition reactions under flow conditions. ACS Sustain Chem Eng 5(4):3438–3447

    Article  CAS  Google Scholar 

  37. Jiang L, Shi X-L, Lv Y, Liu S, Du M, Hu Q, Shi K (2022) Acid-base bifunctional catalysis by a heteropolyacid and amines on the polyetheretherketone fiber for cleaner acceleration of the one-pot tandem reactions. J Ind Eng Chem 113:439–449

    Article  CAS  Google Scholar 

  38. Shi X-L, Jiang L, Sun B, Liu S, Du M, Hu Q, Gong H, Liu B (2021) Tuning acid-base cooperativity to create bifunctional fiber catalysts for one-pot tandem reactions in water. React Chem Eng 6:2280–2291

    Article  CAS  Google Scholar 

  39. Shi X-L, Lv Yue, Zhang T, Hu Q, Shi K, Li Z (2023) Polyetheretherketone fiber-supported TBD as an efficient fibrous superbase catalyst for organic conversions in continuous-flow processing. J Catal 418:110–120

    Article  CAS  Google Scholar 

  40. Liu S, Shi X-L, Zhang T, Hu Q, Shi K, Li Z (2023) Quaternary ammonium salt functionalized polyetheretherketone fiber: a novel fibrous material for phase-transfer catalysis. React Funct Polym 182:105479

    Article  CAS  Google Scholar 

  41. Shi X-L, Du M, Sun B, Liu S, Jiang L, Hu Q, Gong H, Xu G, Liu B (2022) A novel Fiber-supported superbase in spinning basket reactor for cleaner chemical fixation of CO2 with 2-aminobenzonitriles in water. Chem Eng J 430:133204

    Article  CAS  Google Scholar 

  42. Xiao J, Wang L, Ran J, Zhao J, Ma N, Tao M, Zhang W (2020) Quaternary ammonium functionalized polyacrylonitrile fiber supported phosphotungstic acid as efficient heterogeneous catalyst: Hydrophobic tuning of the catalytic microenvironment. J Clean Prod 274:122473

    Article  CAS  Google Scholar 

  43. Xiao J, Wang L, Zhang H, Ma N, Tao M, Zhang W (2022) Immobilization of Pd(0) nanoparticles on gemini quaternary ammonium functionalized polyacrylonitrile fibers as highly active catalysts for heck reactions and 4-nitrophenol reduction. Chem Eng Sci 247:117053

    Article  CAS  Google Scholar 

  44. Zhang H, Liang W, Xiao J, Zhao J (2023) Functional fiber with bis (N-heterocyclic carbene) structure prevents Pd(0) nanoparticle agglomeration for an efficient and recyclable Heck reaction. Chem Eng J 455:140592

    Article  CAS  Google Scholar 

  45. Wu Z, Ren B, Shao B, Chen Z, Zhao Z, Liu C, Zhang H (2022) Immobilization of copper(I) iodide on polyaza-ligand-functionalized polyacrylonitrile fibers as highly active catalysts for the 1,3-dipolar cycloaddition reaction. Polymer 262:125438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Youth Foundation of Hebei Education Department, China (No. JQN2022025); Science and Technology Plan Projects of Tangshan City, China (Grant No. 22130218H)

Funding

The Youth Foundation of Hebei Education Department, JQN2022025, Science and Technology Plan Projects of Tangshan City, 22130218H

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Xiao or Yali Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2510 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ren, B., Wang, L. et al. Acid–Base Bifunctional Fiber as Highly Active Catalyst for the Tandem Deprotection-Knoevenagel Reaction. Catal Lett 154, 1451–1461 (2024). https://doi.org/10.1007/s10562-023-04410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04410-2

Keywords

Navigation