Skip to main content
Log in

Agarose Hydrogel Beads: An Effective Approach to Improve the Catalytic Activity, Stability and Reusability of Fungal Amyloglucosidase of GH15 Family

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This study deals with the immobilization of amyloglucosidase within agarose using method of entrapment. Enzyme was produced from Aspergillus fumigatus KIBGE-IB33 and then partially purified using 40% ammonium sulphate saturation. Using 40 gl−1 concentration of agarose and adjusting 3.0 mm size of hydrogels, maximum entrapment yield (78%) was obtained. The kinetic behavior was slightly changed after immobilization as reaction time and reaction temperature increases from 5.0 min (soluble) to 10.0 min (immobilized) and 60 °C (soluble) to 65 °C (immobilized), respectively while, pH optima remained same (pH 5.0). Substrate saturation kinetics revealed that Km was increased from 1.47 to 4.215 mg ml−1 while, the value of Vmax decreased from 947 to 611 kU mg−1 for soluble and entrapped amyloglucosidase, respectively. The stability profile of amyloglucosidase also significantly improved after entrapment in agarose hydrogels at 50, 60 and 70 °C for 120 min with retention of 77, 59 and 25% residual activity, respectively. Furthermore, the t1/2 of soluble and immobilized amyloglucosidase at 60 °C was 167 and 375 min respectively. Due to increase in reusability for various subsequent cycles of entrapped amyloglucosidase, about 8.73 mg ml−1 increase in glucose production was observed as compared to soluble enzyme.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Chem Soc Rev 42:6437–6474

    Article  CAS  PubMed  Google Scholar 

  2. Gray CJ, Weissenborn MJ, Eyers CE, Plitsch SL (2013) Chem Soc Rev 42:6378–6405

    Article  CAS  PubMed  Google Scholar 

  3. Liese A, Hilterhaus L (2013) Chem Soc Rev 42:6236–6249

    Article  CAS  PubMed  Google Scholar 

  4. Powell LW (1984) Biotechnol Genet Eng Rev 2:409–438

    Article  CAS  PubMed  Google Scholar 

  5. Trevan MD (1980) Immobilized enzymes. An introduction and applications in biotechnology. Wiley, Chichester

    Google Scholar 

  6. McLaren AA, Packer L (1970) Adv Enzymol Relat Areas Mol Biol 33:245–308

    CAS  PubMed  Google Scholar 

  7. Cao L (2005) Curr Opin Chem Biol 9:217–226

    Article  CAS  PubMed  Google Scholar 

  8. Arıca Y, Bayramoğlu G (2004) J Mol Catal B: Enzym 27:255–265

    Article  CAS  Google Scholar 

  9. Zucca P, Fernandez-Lafuente R, Sanjust E (2016) Molecules 21:1577

    Article  CAS  Google Scholar 

  10. Prakash O, Jaiswal N (2011) World Appl Sci J 13:572–577

    CAS  Google Scholar 

  11. Pervez S, Aman A, Iqbal S, Siddiqui NN, Qader SA (2014) BMC Biotechnol 14:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  13. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Biotechnol Appl Biochem 1543:135–152

    Article  Google Scholar 

  14. Pervez S, Aman A, Qader SAU (2017) Int J Biol Macromol 96:70–77

    Article  CAS  PubMed  Google Scholar 

  15. Pervez S, Siddiqui NN, Ansari A, Aman A, Qader SAU (2015) Ann Microbiol 65:2287–2291

    Article  CAS  Google Scholar 

  16. Trinder P (1969) Ann Clin Biochem 6:24–28

    Article  CAS  Google Scholar 

  17. Trinder P (1969) J Clin Pathol 22:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghani M, Aman A, Rehman HU, Siddiqui NN, Qader SAU (2013) Starch/Stärch 65:875–884

    Article  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  20. Baek K, Clay NE, Qin EC, Sullivan KM, Kim DH, Kong H (2015) Eur Polym J 72:413 – 422

    Article  CAS  Google Scholar 

  21. Górecka E, Jastrzębska M (2011) Biotechnol Food Sci 75:65–86

    Google Scholar 

  22. Kumar S, Dwevedi A, Kayastha AM (2009) J Mol Catal B: Enzym 58:138–145

    Article  CAS  Google Scholar 

  23. Quiroga E, Illanes CO, Ochoa NA, Barberis S (2011) Process Biochem 46:1029–1034

    Article  CAS  Google Scholar 

  24. Nawaz MA, Karim A, Bibi Z, Rehman HU, Aman A, Hussain D, Ullah M, Qader SAU (2016) J Taiwan Inst Chem Eng 64:31–38

    Article  CAS  Google Scholar 

  25. Kumar D, Muthukumar M, Garg N (2012) J Environ Biol 33:1021–1025

    CAS  PubMed  Google Scholar 

  26. Ertan F, Yagar H, Balkan B (2007) Prep Biochem Biotechnol 37:195–204

    Article  CAS  PubMed  Google Scholar 

  27. Hussain A, Kangwa M, Yumnam N, Fernandez-Lahore M (2015) AMB Express 5:51

    Article  PubMed Central  Google Scholar 

  28. Nawaz MA, Aman A, Rehman HU, Bibi Z, Ansari A, Islam Z, Khan IA, Qader SAU (2016) Appl Biochem Biotechnol 179:383–397

    Article  CAS  PubMed  Google Scholar 

  29. Karim A, Nawaz MA, Aman A, Qader SAU (2017) Catal Lett 147:1792–1801

    Article  CAS  Google Scholar 

  30. Mahajan R, Gupta VK, Sharma J (2010) Ind J Pharm Sci 72:223–228

    Article  CAS  Google Scholar 

  31. Norouzian D (2003) Iran J Biotechnol 1:197–206

    CAS  Google Scholar 

  32. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  33. Mulagalapalli S, Kumar S, Kalathur RC, Kayastha AM (2007) Appl Biochem Biotechnol 142:291–297

    Article  CAS  PubMed  Google Scholar 

  34. Ortega N, Perez-Mateos M, Pilar MC, Busto MD (2009) J Agric Food Chem 57:109–115

    Article  CAS  PubMed  Google Scholar 

  35. Torres R, Pessela BC, Mateo C, Ortiz C, Fuentes M, Guisan JM, Fernandez-Lafuente R (2004) Biotechnol Prog 20:1297–1300

    Google Scholar 

  36. de Melo RR, Alnoch RC, Vilela AFL, de Souza EM, Krieger N, Ruller R, Sato HH, Mateo C (2017) Molecules 22:1088

    Article  CAS  Google Scholar 

  37. Tardioli PW, Vieira MF, Vieira AMS, Zaninb GM, Betancor L, Mateo S, Fernández-Lorentec G, Guisán JM (2011) Process Biochem 46:409–412

    Article  CAS  Google Scholar 

  38. Gomes E, de Souza SR, Grandi RP, da Silva R (2005) Braz J Microbiol 36:75–82

    Article  CAS  Google Scholar 

  39. Zheng Y, Xue Y, Zhang Y, Zhou C, Schwaneberg U, Ma Y (2010) Appl Microbiol Biotechnol 87:225–233

    Article  CAS  PubMed  Google Scholar 

  40. Amirbandeh M, Taheri-Kafrani A (2016) Int J Biol Macromol 93:1183–1191

    Article  CAS  PubMed  Google Scholar 

  41. Eldin MSM, Seuror EI, Nasr MA, Tieama HA (2011) Appl Biochem Biotechnol 164:45–57

    Article  CAS  PubMed  Google Scholar 

  42. Defaei M, Taheri-Kafrani A, Miroliaei M, Yaghmaei P (2018) Int J Biol Macromol 113:354–360

    Article  CAS  PubMed  Google Scholar 

  43. Adham NZ, Ahmed HM, Naim N (2010) J Microbiol Biotechnol 20:332–339

    CAS  PubMed  Google Scholar 

  44. Sharma M, Sharma V, Majumdar DK (2014) Int Sch Res Notices. https://doi.org/10.1155/2014/936129

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sato T Tosa T (1993) Optical resolution of racemic amino acid by aminoacylase. In: Tanaka A, Tosa T (eds) Industrial applications of immobilized biocatalysts, Marcel Dekker Inc., New York, pp 3–14

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support from The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidra Pervez.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest regarding publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervez, S., Nawaz, M.A., Aman, A. et al. Agarose Hydrogel Beads: An Effective Approach to Improve the Catalytic Activity, Stability and Reusability of Fungal Amyloglucosidase of GH15 Family. Catal Lett 148, 2643–2653 (2018). https://doi.org/10.1007/s10562-018-2460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2460-y

Keywords

Navigation