Skip to main content
Log in

Carbon Coated Metal Nanoparticles for Electrocatalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

To promote the performance of nanoparticle electrocatalysts, a facile hydrothermal method is developed to generate core–shell nanocomposites with a metal catalyst core and a carbon shell. In this method, glucose serves as the reducing agent and carbon precursor while cetyltrimethylammonium surfactants serve as both pore structure-directing agents and nanoparticle capping agent. The accessibility of the metal catalyst core was examined by gas-phase ethylene hydrogenation and the electrocatalytic activity was tested by formic acid oxidation (FOR). The selection of halide counter ions used during the synthesis was found to be critical. The optimized sample of Pd-carbon nanocomposite exhibits a FOR current density of 2.55 mA/cm2, which is higher than that of un-coated Pd nanoparticles with no support (0.89 mA/cm2) and with carbon nanotube support (1.08 mA/cm2).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun Y, Xia Y (2002) Science 298:2176–2179

    Article  CAS  Google Scholar 

  2. Tsung C-K, Kuhn JN, Huang W, Aliaga C, Hung L-I, Somorjai GA, Yang P (2009) J Am Chem Soc 131:5816–5822

    Article  CAS  Google Scholar 

  3. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Science 315:493–497

    Article  CAS  Google Scholar 

  4. Kuo CH, Tang Y, Chou LY, Sneed BT, Brodsky CN, Zhao ZP, Tsung CK (2012) J Am Chem Soc 134:14345–14348

    Article  CAS  Google Scholar 

  5. Zhang W, Lu G, Cui C, Liu Y, Li S, Yan W, Xing C, Chi YR, Yang Y, Huo F (2014) Adv Mater 26:4056–4060

    Article  CAS  Google Scholar 

  6. Laursen AB, Højholt KT, Lundegaard LF, Simonsen SB, Helveg S, Schüth F, Paul M, Grunwaldt J-D, Kegnæs S, Christensen CH, Egeblad K (2010) Angew Chem Int Ed 49:3504–3507

    Article  CAS  Google Scholar 

  7. Joo SH (2009) Nat Mater 8:126–131

    Article  CAS  Google Scholar 

  8. Lee I, Joo JB, Yin Y, Zaera F (2011) Angew Chem Int Ed 50:10208–10211

    Article  CAS  Google Scholar 

  9. Mazumder V, Chi M, More KL, Sun S (2010) J Am Chem Soc 132:7848–7849

    Article  CAS  Google Scholar 

  10. Gan L, Heggen M, O’Malley R, Theobald B, Strasser P (2013) Nano Lett 13:1131–1138

    Article  CAS  Google Scholar 

  11. Sun X, Li Y (2004) Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  12. Qian H-S (2006) Chem Mater 18:2102

    Article  CAS  Google Scholar 

  13. Gong K, Yu P, Su L, Xiong S, Mao L (2007) J Phys Chem C 111:1882–1887

    Article  CAS  Google Scholar 

  14. Sun Li (2005) Langmuir 21:6019–6024

    Article  CAS  Google Scholar 

  15. Sun Y-K, Myung S-T, Kim M-H, Prakash J, Amine K (2005) J Am Chem Soc 127:13411–13418

    Article  CAS  Google Scholar 

  16. Zhai J, Tao X, Pu Y, Zeng X-F, Chen J-F (2011) Mater Res Bull 46:865–870

    Article  CAS  Google Scholar 

  17. Mao W-F, Yan J, Xie H, Tang Z-Y, Xu Q (2013) J Power Sour 237:167–171

    Article  CAS  Google Scholar 

  18. Cao J, Song L, Tang J, Xu J, Wang W, Chen Z (2013) Appl Surf Sci 274:138–143

    Article  CAS  Google Scholar 

  19. Ni J, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T (2010) J Power Sour 195:2877–2882

    Article  CAS  Google Scholar 

  20. Zhang Z, Zhou Y, Zhang Y, Sheng X, Zhou S, Xiang S (2013) Appl Surf Sci 286:344–350

    Article  CAS  Google Scholar 

  21. Mu J, Liu Y, Wang H, Ye J, Wen X, Gu L, Xie Y-T (2012) Mater Exp 2:130–136

    Article  CAS  Google Scholar 

  22. Wang Z, Xiao P, He N (2006) Carbon 44:3277–3284

    Article  CAS  Google Scholar 

  23. Noh M, Kwon Y, Lee H, Cho J, Kim Y, Kim MG (2005) Chem Mater 17:1926–1929

    Article  CAS  Google Scholar 

  24. Zhang W-M, Wu X-L, Hu J-S, Guo Y-G, Wan L-J (2008) Adv Funct Mater 18:3941–3946

    Article  CAS  Google Scholar 

  25. Luo H, Shen L, Rui K, Li H, Zhang X (2013) J Alloy Compd 572:37–42

    Article  CAS  Google Scholar 

  26. Chen Z, Zhou M, Cao Y, Ai X, Yang H, Liu J (2012) Adv Energy Mater 2:95–102

    Article  CAS  Google Scholar 

  27. Yu X, Yang S, Zhang B, Shao D, Dong X, Fang Y, Li Z, Wang H (2011) J Mater Chem 21:12295

    Article  CAS  Google Scholar 

  28. Ren MM, Zhou Z, Gao XP, Peng WX, Wei JP (2008) J Phys Chem C 112:5689–5693

    Article  CAS  Google Scholar 

  29. Zhong Y, Wang X, Jiang K, Zheng JY, Guo Y, Ma Y, Yao J (2011) J Mater Chem 21:17998

    Article  CAS  Google Scholar 

  30. Lou XW, Chen JS, Chen P, Archer LA (2009) Chem Mater 21:2868–2874

    Article  CAS  Google Scholar 

  31. Sun X, Liu J, Li Y (2006) Chem Mater 18:3486–3494

    Article  CAS  Google Scholar 

  32. Du Z, Zhang S, Zhao J, Wu X, Lin R (2013) J Nanosci Nanotechnol 13:3602–3605

    Article  CAS  Google Scholar 

  33. Zhang W-M, Hu J-S, Guo Y-G, Zheng S-F, Zhong L-S, Song W-G, Wan L-J (2008) Adv Mater 20:1160–1165

    Article  CAS  Google Scholar 

  34. Campbell CT, Parker SC, Starr DE (2002) Science 298:811–814

    Article  CAS  Google Scholar 

  35. Asoro MA, Ferreira PJ, Kovar D (2014) Acta Mater 81:173–183

    Article  CAS  Google Scholar 

  36. Liang C, Hong K, Guiochon GA, Mays JW, Dai S (2004) Angew Chem Int Ed 43:5785–5789

    Article  CAS  Google Scholar 

  37. Liang C, Dai S (2006) J Am Chem Soc 128:5316–5317

    Article  CAS  Google Scholar 

  38. Jana NR, Gearheart L, Murphy CJ (2001) Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  39. Chen S, Carroll DL (2004) J Phys Chem B 108:5500–5506

    Article  CAS  Google Scholar 

  40. Zaera F, Somorjai GA (1984) J Am Chem Soc 106:2288–2293

    Article  CAS  Google Scholar 

  41. Ni W, Kou X, Yang Z, Wang J (2008) ACS Nano 2:677–686

    Article  CAS  Google Scholar 

  42. Liu K, Zhao N, Kumacheva E (2011) Chem Soc Rev 40:656–671

    Article  CAS  Google Scholar 

  43. Xiong Y, Xia Y (2007) Adv Mater 19:3385–3391

    Article  CAS  Google Scholar 

  44. Tanev PT, Pinnavaia TJ (1996) Chem Mater 8:2068–2079

    Article  CAS  Google Scholar 

  45. Etienne M, Quach A, Grosso D, Nicole L, Sanchez C, Walcarius A (2007) Chem Mater 19:844–856

    Article  CAS  Google Scholar 

  46. Wu Z-S, Sun Y, Tan Y-Z, Yang S, Feng X, Müllen K (2012) J Am Chem Soc 134:19532–19535

    Article  CAS  Google Scholar 

  47. Roelants E, De Schryver FC (1987) Langmuir 3:209–214

    Article  CAS  Google Scholar 

  48. Gravsholt S (1976) J Colloid Interface Sci 57:575–577

    Article  CAS  Google Scholar 

  49. Almora-Barrios N, Novell-Leruth G, Whiting P, Liz-Marzán LM, López N (2014) Nano Lett 14:871–875

    Article  CAS  Google Scholar 

  50. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The donors of the American Chemical Society Petroleum Research Fund are acknowledged. The authors thank the support from Boston College. The authors thank Prof. Dunwei Wang and Xiahui Yao for help with Raman Spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Kuang Tsung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheehan, M.K., Rudden, M., Cai, H. et al. Carbon Coated Metal Nanoparticles for Electrocatalysis. Catal Lett 146, 309–318 (2016). https://doi.org/10.1007/s10562-015-1662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1662-9

Keywords

Navigation