Skip to main content
Log in

Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allwine KJ, Flaherty JE (2006) Joint Urban 2003: study overview and instrument locations. PNNL-15967. Pacific Northwest National Laboratory, Richland, WA

  • Bahaj AS, Myers L, James PAB (2007) Urban energy generation: influence of micro-wind turbine output on electricity consumption in buildings. Energy Build 39:154–165

    Article  Google Scholar 

  • Barlow JF (2014) Progress in observing and modelling the urban boundary layer. Urban Clim 10:216–240

    Article  Google Scholar 

  • Barlow JF, Coceal O (2009) A review of urban roughness sublayer turbulence. UK Met Office Technical Report No. 527, 68 pp

  • Brotzge JA, Crawford KC (2000) Estimating sensible heat flux from the Oklahoma Mesonet. J Appl Meteorol 39:102–116

    Article  Google Scholar 

  • Burian SJ, Suk Han W, Brown MJ (2003) Morphological analyses using 3D building databases: Oklahoma City, Oklahoma. Report LA-UR-05-1821. Los Alamos National Laboratory

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Cantelli A, Monti P, Leuzzi G (2015) Numerical study of the urban geometrical representation impact in a surface energy budget model. Environ Fluid Mech 15:251–273

    Article  Google Scholar 

  • Cesaroni G, Badaloni C, Gariazzo C, Stafoggia M, Sozzi R, Davoli M, Forastiere F (2013) Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ Health Persp 121:321–331

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104:229–259

    Article  Google Scholar 

  • Cionco RM (1965) Mathematical model for air flow in a vegetative canopy. J Appl Meteorol 4:517–522

    Article  Google Scholar 

  • Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491–519

    Article  Google Scholar 

  • Coceal O, Dobre A, Thomas TG, Belcher SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589:375–409

    Article  Google Scholar 

  • Dallman A, Di Sabatino S, Fernando HJS (2013) Flow and turbulence in an industrial/suburban roughness canopy. Environ Fluid Mech 13:279–307

    Article  Google Scholar 

  • De Ridder K (2010) Bulk transfer relations for the Roughness sublayer. Boundary-Layer Meteorol 134:257–267

    Article  Google Scholar 

  • Di Bernardino A, Monti P, Leuzzi G, Querzoli G (2015) Water-Channel study of flow and turbulence past a two-dimensional array of obstacles. Boundary-Layer Meteorol 155:73–85

    Article  Google Scholar 

  • Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles within and above an urban canopy. Boundary-Layer Meteorol 127:131–151

    Article  Google Scholar 

  • Fernando HJS (2010) Fluid dynamic of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365–389

    Article  Google Scholar 

  • Fernando HJS, Zajic D, Di Sabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys Fluids 22:051301

    Article  Google Scholar 

  • Gariazzo C, Silibello C, Finardi S, Radice P, Piersanti A, Calori G, Cecinato A, Perrino C, Nussio F, Pelliccioni A, Gobbi GP, Di Filippo P (2007) A gas/aerosol air pollutants study over the urban area of Rome using a comprehensive chemical transport model. Atmos Environ 41:7286–7303

    Article  Google Scholar 

  • Gariazzo C, Lamberti M, Hänninen O, Silibello C, Pelliccioni A, Porta D, Cecinato A, Gherardi M, Forastiere F (2015) Assessment of population exposure to Polycyclic Aromatic Hydrocarbons (PAHs) using integrated models and evaluation of uncertainties. Atmos Environ 101:235–245

    Article  Google Scholar 

  • Garratt JR (1978) Transfer characteristics for a heterogeneous surface of large aerodynamics roughness. Q J R Meteorol Soc 104:199–211

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK, 316 pp

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of urban surface form. J Appl Meteorol 38:1261–1292

    Google Scholar 

  • Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123:339–363

    Article  Google Scholar 

  • Hertwig D, Efthimiou GC, Bartzis JG, Leitl B (2012) CFD-RANS model validation of turbulent flow in a semi-idealized urban canopy. J Wind Eng Ind Aerodyn 111:61–72

    Article  Google Scholar 

  • Hussain, Lee (1980) An investigation of wind forces on three dimensional roughness elements in a simulated boundary layer flow. Report BS 56. Department of Building Science, University of Sheffield, 81 pp

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Article  Google Scholar 

  • Karlsson S (1986) The applicability of wind profile formulas to an urban–rural interface site. Boundary-Layer Meteorol 34:333–355

    Article  Google Scholar 

  • Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Boundary-Layer Meteorol 111:55–84

    Article  Google Scholar 

  • Klein PM, Galvez JM (2015) Flow and turbulence characteristics in a suburban street canyon. Environ Fluid Mech 15:419–438

    Article  Google Scholar 

  • Kono T, Tamura T, Ashie Y (2010) Numerical investigations of mean winds within canopies of regularly arrayed cubical buildings under neutral stability conditions. Boundary-Layer Meteorol 134:131–155

    Article  Google Scholar 

  • Kukkonen J, Olsson T, Schultz DM, Baklanov A, Klein T, Miranda AI, Monteiro A, Hirtl M, Tarvainen V, Boy M, Peuch V-H, Poupkou A, Kioutsioukis I, Finardi S, Sofiev M, Sokhi R, Lehtinen KEJ, Karatzas K, San José R, Astitha M, Kallos G, Schaap M, Reimer E, Jakobs H, Eben K (2012) A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmos Chem Phys 12:1–87

    Article  Google Scholar 

  • Leuzzi G, Monti P (1997) Breeze analysis by mast and sodar measurements. Nuovo Cimento C 20:343–359

    Google Scholar 

  • Leuzzi G, Amicarelli A, Monti P, Thomson DJ (2012) A 3D Lagrangian micromixing dispersion model LAGFLUM and its validation with a wind tunnel experiment. Atmos Environ 54:117–126

    Article  Google Scholar 

  • Luhar AK, Thatcher M, Hurley PJ (2014) Evaluating a building averaged urban surface scheme in an operational mesoscale model for flow and dispersion. Atmos Environ 88:47–58

    Article  Google Scholar 

  • Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97:25–45

    Article  Google Scholar 

  • Mulhearn PJ, Finnigan JJ (1978) Turbulent flow over a very rough random surface. Boundary-Layer Meteorol 15:109–132

    Article  Google Scholar 

  • Nava S, Becherini F, Bernardi A, Bonazza A, Chiari M, Garcia-Orellana I, Lucarelli F, Ludwig N, Migliori A, Sabbioni C, Udisti R, Valli G, Vecchi R (2010) An integrated approach to asses air pollution threats to cultural heritage in a semi-confined environment: The case study of Michelozzo’s Courtyard in Florence (Italy). Sci Total Environ 48:1403–1413

    Article  Google Scholar 

  • Neophytou MK-A, Markides CN, Fokaides PA (2014) An experimental study of the flow through and over two-dimensional rectangular roughness elements: Deductions for urban boundary layer parameterizations and exchange processes. Phys Fluids 26:086603

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, 397 pp

  • Pasquill F (1974) Atmospheric diffusion. Wiley, New York, 429 pp

  • Pelliccioni A (1997) The Gram–Charlier method to evaluate the probability density function in monodimensional case. Nuovo Cimento C 20:435–452

    Google Scholar 

  • Pelliccioni A, Monti P, Leuzzi G, Gariazzo C (2012) Some characteristics of the urban boundary layer above Rome, Italy, and applicability of Monin–Obukhov similarity. Environ Fluid Mech 12:405–428

    Article  Google Scholar 

  • Pelliccioni A, Monti P, Leuzzi G (2014) Roughness length parameterisation in urban boundary layers. Int J Environ Pollut 55:13–21

    Article  Google Scholar 

  • Pelliccioni A, Monti P, Leuzzi G (2015) An alternative wind profile formulation for urban areas in neutral conditions. Environ Fluid Mech 15:135–146

    Article  Google Scholar 

  • Pournazeri S, Venkatram A, Princevac M, Tan S, Schulte N (2012) Estimating the height of the nocturnal boundary layer for dispersion applications. Atmos Environ 54:611–623

    Article  Google Scholar 

  • Raupach MR, Thom AS, Edwards I (1980) A wind tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol 18:373–397

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33:4001–4008

    Article  Google Scholar 

  • Rotach MW (2001) Simulation of urban-scale dispersion using a Lagrangian stochastic dispersion model. Boundary-Layer Meteorol 99:379–410

    Article  Google Scholar 

  • Rotach MW (2005) Structure of the urban boundary layer. In: Fisher B, Joffre S, Kukkonen J, Piringer M, Rotach M, Schatzmann M (eds) Meteorology applied to urban air pollution problems. Final Report COST Action 715. Demetra Ltd Publishers, Bulgaria

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990

    Article  Google Scholar 

  • Roth M, Oke TR (1993) Turbulent transfer relationships over an urban surface. I: spectral characteristics. Q J R Meteorol Soc 119:1071–1104

    Google Scholar 

  • Salizzoni P, Marro M, Soulhac L, Grosjean N, Perkins RJ (2011) Turbulent transfer between street canyons and the overlying atmospheric boundary layer. Boundary-Layer Meteorol 141:393–414

    Article  Google Scholar 

  • Santamouris M, Asimakopoulos DN (2001) Energy and climate in the urban built environment. James X James, London

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp

  • Trini Castelli S, Falabino S, Mortarini L, Ferrero E, Richiardone R, Anfossi D (2014) Experimental investigation of surface parameters in low-wind speed conditions in a suburban area. Q J R Meteorol Soc 140:2023–2036

    Article  Google Scholar 

  • Varotsos C, Yzanis C, Cracknell A (2009) The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ Sci Pollut Res 16:590–592

    Article  Google Scholar 

  • Wilkzak JM, Phillips MS (1986) An indirect estimation of convective boundary layer structure for use in pollution dispersion models. J Clim Appl Meteorol 25:1609–1624

    Article  Google Scholar 

  • Yi C (2008) Momentum transfer within canopies. J Appl Meteorol 47:262–275

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Claudio Gariazzo of the Park Service of Rome Municipality for his collaboration during the field campaign and Maria Paola Bogliolo for her help in managing the building database. The assistance of Annalisa Di Bernardino for the water-channel data analysis is greatly appreciated. The research was partially funded by the Italian Ministry of Health (project ITALIA, PMS/025/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Monti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelliccioni, A., Monti, P. & Leuzzi, G. Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers. Boundary-Layer Meteorol 160, 225–248 (2016). https://doi.org/10.1007/s10546-016-0141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0141-1

Keywords

Navigation