Skip to main content
Log in

Some characteristics of the urban boundary layer above Rome, Italy, and applicability of Monin–Obukhov similarity

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Air temperature and wind speed profiles measured during one year by means of a SODAR-RASS system located within a large park were examined for the urban boundary layer (UBL) over Rome, Italy. These data, combined with velocity and temperature measurements performed near the ground were used to analyze the vertical structure of the boundary layer and to estimate some turbulence parameters characterizing the surface layer. About 52,000 vertical profiles of wind speed and temperature were used for the analysis, allowing investigation for a large variety of stability conditions. First, friction velocity and Obukhov length were examined, showing clearly their dependence on the time of day and season. Second, the applicability of the Monin–Obukhov (MO) similarity theory—developed over rural terrain—was tested up to 200 m above ground level. For the wind speed profiles, the performance of the MO similarity degrades with both increasing height and stability, with maximum errors that are on the order of 300 % at 200 m for the most stable case. In contrast, for the air temperature the error always remains below 50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nieuwstadt FTM, Duynkerke PG (1996) Turbulence in the atmospheric boundary layer. Atmos Res 40: 111–142

    Article  CAS  Google Scholar 

  2. Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126: 941–990

    Article  Google Scholar 

  3. Foken T (2006) 50 years of Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119: 431–447

    Article  Google Scholar 

  4. Oke TR (1982) The energy basis of the urban heat island. Q J R Meteorol Soc 108: 1–24

    Google Scholar 

  5. Atkinson BJ (1985) UPDATE: the urban atmosphere. Cambridge University Press, Cambridge

    Google Scholar 

  6. Fernando HJS, Lee S-M, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1: 107–164

    Article  CAS  Google Scholar 

  7. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35: 469–496

    Article  Google Scholar 

  8. Fernando HJS (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42: 365–389

    Article  Google Scholar 

  9. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23: 1–26

    Article  Google Scholar 

  10. Mestayer PG, Durand P, Augustin P, Bastin S, Bonneford J-M et al (2005) The urban boundary layer field campaign in marseille (UBL/CLU_ESCOMPTE): set-up and first results. Boundary-Layer Meteorol 114: 315–365

    Article  Google Scholar 

  11. Ellis NL, Middleton DR (2000) Field measurements and modeling of urban meteorology in Birmingham, UK. Met Office Turbulence and Diffusion Note No. 268. Met Office, Bracknell

  12. Rantamaki M, Pohjola M, Kukkonen J, Karppinen A (2003) Evaluation of the HIRLAM model against meteorological data during an air pollution episode in southern Finland 27–29 December 1995. In: 4th conference on urban air quality, Hatfield, UK, 25–27 March 2003, pp 420–423

  13. Ziomas IC (1998) The Mediterranean campaign of photochemical tracers-transport and chemical evolution (MED-CAPHOT-TRACE): an outline. Atmos Environ 32: 2045–2053

    Article  CAS  Google Scholar 

  14. Baklanov A, Kuchin A (2004) The mixing height in urban areas—comparative study for Copenhagen. Atmos Chem Phys 4: 2839–2866

    Article  Google Scholar 

  15. Nadeau DF, Brutsaert W, Parlange MB, Bou-Zeid E, Barrenetxea G, Couach O, Boldi M-O, Selker JS, Vetterli M (2009) Estimation of urban sensible heat flux using a dense wireless network of observations. Environ Fluid Mech 9: 635–653

    Article  Google Scholar 

  16. Feigenwinter C, Vogt R, Parlow E (1999) Vertical structure of selected turbulence characteristics above an urban canopy. Theor Appl Climatol 62: 51–63

    Article  Google Scholar 

  17. Emeis S, Münkel C, Vogt S, Müller WJ, Schäfer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS and ceilometer measurements. Atmos Environ 38: 273–286

    Article  CAS  Google Scholar 

  18. Rotach MW, Gryning SE, Batchvarova E, Christen A, Vogt R (2004) Pollutant dispersion close to an urban surface—the BUBBLE tracer experiment. Meteorol Atmos Phys 87: 39–56

    Article  Google Scholar 

  19. Argentini S, Mastrantonio G, Lena F (1999) Case studies of the wintertime convective boundary-layer structure in the urban area of Milan, Italy. Boundary-Layer Meteorol 93: 253–267

    Article  Google Scholar 

  20. Wood CR, Lacser A, Barlow JF, Padhra A, Belcher SE, Nemitz E, Helfter C, Famulari D, Grimmond CSB (2010) Turbulent flow at 190 m height above London during 2006–2008: a climatology and the applicability of similarity theory. Boundary-Layer Meteorol 137: 77–96

    Article  Google Scholar 

  21. Barlow JF, von Rooney GG, Hünerbein S, Bradley SG (2008) Relating urban surface-layer structure to upwind terrain for the Salford Experiment (Salfex). Boundary-Layer Meteorol 127: 173–191

    Article  Google Scholar 

  22. Gryning SE, Batchavarova E, Brummer B, Joergensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol 124: 251–268

    Article  Google Scholar 

  23. Colacino M (1980) Some observations of the urban heat island in Rome during the summer season. Nuovo Cimento 3C: 165–179

    Google Scholar 

  24. Colacino M, Lavagnini A (1982) Evidence of the urban heat island in Rome by climatological analyses. Arch Meteorol Geophys Bioclimatol 31: 87–97

    Article  Google Scholar 

  25. Palmieri S, delle Passeri L, Siani AM, Casale GR (2002) Temperatura, umidità e vento nella canopia urbana. In: Ecosistemi Urbani 182, Bardi Editore, Roma, pp 109–132

  26. Bonacquisti V, Casale GR, Palmieri S, Siani AM (2006) A canopy layer model and its application to Rome. Atmos Environ 364: 1–13

    CAS  Google Scholar 

  27. Mastrantonio G, Viola A, Argentini S, Fiocco G, Giannini L, Rossini L, Abbate G, Ocone R, Casonato M (1994) Observations of sea breeze events in Rome and the surrounding area by a network of Doppler sodars. Boundary-Layer Meteorol 71: 67–80

    Article  Google Scholar 

  28. Leuzzi G, Monti P (1997) Breeze analysis by Mast and Sodar Measurements. Nuovo Cimento C 20: 343–359

    Google Scholar 

  29. Castracane P, Selmi L, Casadio S, Cacciani M, Fiocci G (2001) Ground-based remote sensing of wind, temperature and aerosol backscattering in an urban environment during different atmospheric stability conditions. Phys Chem Earth B 26: 239–245

    Article  Google Scholar 

  30. Petenko I, Mastrantonio G, Viola A, Argentini S, Coniglio L, Monti P, Leuzzi G (2011) Local circulation diurnal patterns and their relationship with large-scale flows in a coastal area of the Tyrrhenian Sea. Boundary-Layer Meteorol 139: 353–366

    Article  Google Scholar 

  31. Caballero R, Lavagnini A (2002) A numerical investigation of the sea breeze and slope flows around Rome. Nuovo Cimento C 25: 287–304

    Google Scholar 

  32. Ferretti R, Mastrantonio G, Argentini S, Santoleri R, Viola A (2003) A model-aided investigation of winter thermally driven circulation on the Italian Tyrrhenian coast: a case study. J Geophys Res 108(D24): 4777

    Article  Google Scholar 

  33. Monti P, Leuzzi G (2005) A numerical study of mesoscale airflow and dispersion over coastal complex terrain. Int J Environ Pollut 25: 239–250

    Article  CAS  Google Scholar 

  34. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  35. Brotzge JA, Crawford KC (2000) Estimating sensible heat flux from the Oklahoma Mesonet. J Appl Meteorol 39: 102–116

    Article  Google Scholar 

  36. Holtslag AAM (1984) Estimates of diabatic wind speed profiles from near-surface weather observations. Boundary-Layer Meteorol 29: 225–250

    Article  Google Scholar 

  37. Fernando HJS, Zajic D, Di Sabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys Fluids 22: 051301

    Article  Google Scholar 

  38. Panofsky HA, Dutton JA (1984) Atmospheric turbulence. Wiley, New York

    Google Scholar 

  39. Hsieh C-I, Katul G, Chi T-w (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23: 765–772

    Article  Google Scholar 

  40. Paulson CA (1970) The mathematical representation of wind speed and temperature in the unstable atmospheric surface layer. J Appl Meteorol 9: 857–861

    Article  Google Scholar 

  41. Businger JA, Wyngaard JC, Itzumi Y, Bradley EF (1971) Flux profile relationship in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  42. Argentini S, Pietroni I, Gariazzo C, Amicarelli A, Mastrantonio G, Pelliccioni A, Petenko I, Viola A (2009) Boundary layer temperature profiles by a RASS a microwave radiometer. Differences, limits and advantages. Nuovo Cimento 124B: 549–564

    Google Scholar 

  43. Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11: 263–279

    Article  Google Scholar 

  44. Lee S-M, Fernando HJS, Princevac M, Zajic D, Sinesi M, McCulley JL, Anderson J (2003) Transport and diffusion of ozone in the nocturnal and morning boundary layer of the Phoenix valley. Environ Fluid Mech 3: 331–362

    Article  CAS  Google Scholar 

  45. Zilitinkevich SS, Mammarella I, Baklanov AA, Joffre SM (2008) The effect of stratification on the aerodynamic roughness length and displacement height. Boundary-Layer Meteorol 129: 179–190

    Article  Google Scholar 

  46. Zannetti P (1990) Air pollution modeling: theories, computational methods, and available software. Computational Mechanics Publications, New York

    Google Scholar 

  47. Pietri L, Petroff A, Amielh M, Anselmet F. (2009) Turbulence characteristics within sparse and dense canopies. Environ Fluid Mech 9: 297–320

    Article  Google Scholar 

  48. Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Press, Seattle

    Google Scholar 

  49. Karlsson S (1986) The applicability of wind profile formulas to an urban-rural interface site. Boundary-Layer Meteorol 34: 333–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Monti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelliccioni, A., Monti, P., Gariazzo, C. et al. Some characteristics of the urban boundary layer above Rome, Italy, and applicability of Monin–Obukhov similarity. Environ Fluid Mech 12, 405–428 (2012). https://doi.org/10.1007/s10652-012-9246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-012-9246-3

Keywords

Navigation