Skip to main content
Log in

Urban heat island effect and its drivers in large cities of Pakistan

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study assessed the urban heat island (UHI) effect and its driver in five major cities of Pakistan from 2001 to 2022 using Moderate Resolution Imaging Spectroradiometer (MODIS) daily diurnal land surface temperature (LST) data. The study also used the City Clustering Algorithm (CCA) and yearly land cover data from MODIS to quantify the growth of urban areas and statistical data to estimate the changes in population density. The results showed a temperature difference of 4.1 − 5.0°C at night and 2.9 − 4.1°C during the day between the city area and outskirts. More regions showed a significant temperature rise during the nighttime, with an LST increase of more than 0.15°C/year. Major cities of Pakistan have expanded more, ranging from 1.5 to 5.87%, than the population growth (51.6 to 125.5%), which caused a rapid increase in urban population density. This study found a strong correlation between population density and LST, ranging from 0.68 to 0.84 for nighttime LST and from 0.60 to 0.78 for daytime LST. The analysis of changes in urban built-up areas revealed an increase in population density by nearly threefold in some cities. This suggests that dense urbanization is the main factor behind the rapid rise in the UHI effect. Global temperature rise coupled with increased population density would cause a continuous increase in UHI in mega cities of Pakistan. Unless effective mitigation measures are implemented, it will lead to a notable rise in public health risks, water and energy consumption, and damage to urban ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Code availability

The codes used for data processing can be provided on request to the corresponding author.

References

  • Aguilar-Lome J, Espinoza-Villar R, Espinoza J-C, Rojas-Acuña J, Willems BL, Leyva-Molina W-M (2019) Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017). Int J Appl Earth Obs Geoinf 77:119–128. https://doi.org/10.1016/j.jag.2018.12.013

    Article  Google Scholar 

  • Ahmad S, Hussain Z, Qureshi AS, Majeed R, Saleem M (2004) Drought mitigation in Pakistan: current status and options for future strategies. Colombo, Sri Lanka: International Water Management Institute (IWMI) vii, p 47

  • Alamgir M, Khan N, Shahid S, Yaseen ZM, Dewan A, Hassan Q, Rasheed B (2020) Evaluating severity–area–frequency (SAF) of seasonal droughts in Bangladesh under climate change scenarios. Stoch Env Res Risk Assess 34(2):447–464. https://doi.org/10.1007/s00477-020-01768-2

    Article  Google Scholar 

  • Al-Obaidi I, Rayburg S, Półrolniczak M, Neave M (2021) Assessing the impact of wind conditions on urban heat islands in large Australian cities. J Ecol Eng 22(11):1–15

    Article  Google Scholar 

  • Arshad S, Ahmad SR, Abbas S, Asharf A, Siddiqui NA, Islam ZU (2022) Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan. Land Use Policy 113:105874. https://doi.org/10.1016/j.landusepol.2021.105874

    Article  Google Scholar 

  • Asadollah SBHS, Khan N, Sharafati A, Shahid S, Chung E-S, Wang X-J (2022) Prediction of heat waves using meteorological variables in diverse regions of Iran with advanced machine learning models. Stoch Env Res Risk Assess 36(7):1959–1974. https://doi.org/10.1007/s00477-021-02103-z

    Article  Google Scholar 

  • Asbury Z, Aly MH (2019) A geospatial study of the drought impact on surface water reservoirs: study cases from Texas, USA. GIScience Remote Sens 56(6):894–910. https://doi.org/10.1080/15481603.2019.1582154

  • Aslam B, Maqsoom A, Khalid N, Ullah F, Sepasgozar S (2021) Urban overheating assessment through prediction of surface temperatures: a case study of Karachi, Pakistan. ISPRS Int J Geo-Information 10(8):539

    Article  Google Scholar 

  • Banerjee C, Kumar DN (2018) Assessment of surface water storage trends for increasing groundwater areas in India. J Hydrol 562:780–788

    Article  Google Scholar 

  • Baqa MF, Lu L, Chen F, Nawaz-ul-Huda S, Pan L, Tariq A, . . . Li Q (2022) Characterizing spatiotemporal variations in the urban thermal environment related to land cover changes in Karachi, Pakistan, from 2000 to 2020. Remote Sens 14(9):2164

  • Belward AS, Estes JE, Kline KD (1999) The IGBP-DIS global 1-km land-cover data set DISCover: a project overview. Photogramm Eng Remote Sens 65(9):1013–1020

    Google Scholar 

  • Bera D, Chatterjee ND, Ghosh S, Dinda S, Bera S (2022) Recent trends of land surface temperature in relation to the influencing factors using Google Earth Engine platform and time series products in megacities of India. J Clean Prod 379:134735. https://doi.org/10.1016/j.jclepro.2022.134735

    Article  Google Scholar 

  • Chen D, Zhang Y, Yao Y, Hong Y, Guan Q, Tu W (2019) Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line–based on nighttime light data and cellular automata. Appl Geogr 112:102081

    Article  Google Scholar 

  • Dilawar A, Chen B, Trisurat Y, Tuankrua V, Arshad A, Hussain Y, . . ., Guo L (2021) Spatiotemporal shifts in thermal climate in responses to urban cover changes: a-case analysis of major cities in Punjab, Pakistan. Geomatics Nat Hazards Risk 12:763–793. https://doi.org/10.1080/19475705.2021.1890235

  • Du R, Liu CH, Li X, Lin CY (2024) Interaction among local flows, UHI, coastal winds, and complex terrain: effect on urban-scale temperature and building energy consumption during heatwaves. Energy Build 303:113763

    Article  Google Scholar 

  • Farid N, Moazzam MFU, Ahmad SR, Coluzzi R, Lanfredi M (2022) Monitoring the impact of rapid urbanization on land surface temperature and assessment of surface urban heat island using landsat in megacity (Lahore) of Pakistan. Front Remote Sens 3:897397

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, . . ., Schaaf C (2002). Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83(1):287–302. https://doi.org/10.1016/S0034-4257(02)00078-0

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114(1):168–182. https://doi.org/10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  • Fung KF, Huang YF, Koo CH (2018) Improvement of SVR-based drought forecasting models using wavelet pre-processing technique. Paper presented at the E3S Web of Conferences

  • Gao Z, Zaitchik BF, Hou Y, Chen W (2022) Toward park design optimization to mitigate the urban heat Island: assessment of the cooling effect in five US cities. Sustain Cities Soc 81:103870

    Article  Google Scholar 

  • Hamed MM, Khan N, Muhammad MK, Shahid S (2022) Ranking of empirical evapotranspiration models in different climate zones of Pakistan. Land 11(12):2168

    Article  Google Scholar 

  • Heck E, de Beurs KM, Owsley BC, Henebry GM (2019) Evaluation of the MODIS collections 5 and 6 for change analysis of vegetation and land surface temperature dynamics in North and South America. ISPRS J Photogramm Remote Sens 156:121–134. https://doi.org/10.1016/j.isprsjprs.2019.07.011

    Article  Google Scholar 

  • Imran M, Mehmood A (2020) Analysis and mapping of present and future drivers of local urban climate using remote sensing: a case of Lahore, Pakistan. Arab J Geosci 13(6):278. https://doi.org/10.1007/s12517-020-5214-2

    Article  Google Scholar 

  • Iqbal J, Khan N, Shahid S, Ullah S (2024) Evaluation of gridded dataset in estimating extreme precipitations indices in Pakistan. Acta Geophys. https://doi.org/10.1007/s11600-024-01286-7

    Article  Google Scholar 

  • Irie T (2022) The cooling effect of green infrastructure in mitigating nocturnal urban heat islands: a case study of Yoyogi Park and Meiji Jingu Shrine in Tokyo. Landsc Res 47(5):559–583

    Article  Google Scholar 

  • Iyakaremye V, Zeng G, Yang X, Zhang G, Ullah I, Gahigi A, Vuguziga F, Asfaw TG, Ayugi B (2021) Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Sci Total Environ 790:148162. https://doi.org/10.1016/j.scitotenv.2021.148162

    Article  CAS  Google Scholar 

  • Jabbar M, Yusoff M (2022) Assessing The spatiotemporal urban green cover changes and their impact on land surface temperature and urban heat island in Lahore (Pakistan). Geogr Environ Sustain 15:130–140. https://doi.org/10.24057/2071-9388-2021-005

    Article  Google Scholar 

  • Kendall MG (1948) Rank correlation methods. Griffin, Oxford

    Google Scholar 

  • Khan N, Shahid S, Chung E-S, Kim S, Ali R (2019) Influence of surface water bodies on the land surface temperature of Bangladesh. Sustainability 11(23):6754

    Article  Google Scholar 

  • Khan M (2020) Assessment of intra-city urban heat island effect in relation to vulnerable stakeholders via Local Climate Zone classification, Land Surface Temperature analysis, and traverse surveys A Case Study of Karachi, Pakistan. https://doi.org/10.13140/RG.2.2.14548.01922

  • Khan N, Shahid S, Ismail TB, Behlil F (2021a) Prediction of heat waves over Pakistan using support vector machine algorithm in the context of climate change. Stoch Env Res Risk Assess 35(7):1335–1353. https://doi.org/10.1007/s00477-020-01963-1

    Article  Google Scholar 

  • Khan N, Shahid S, Sharafati A, Yaseen ZM, Ismail T, Ahmed K, Nawaz N (2021b) Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan. Arab J Geosci 14(19):2035. https://doi.org/10.1007/s12517-021-08432-1

    Article  Google Scholar 

  • Klein I, Gessner U, Dietz AJ, Kuenzer C (2017) Global WaterPack – A 250m resolution dataset revealing the daily dynamics of global inland water bodies. Remote Sens Environ 198:345–362. https://doi.org/10.1016/j.rse.2017.06.045

    Article  Google Scholar 

  • Ladan TA, Ibrahim MH, Ali SSBS, Saputra A (2022) A geographical review of urban farming and urban heat island in developing countries. IOP Conf Ser: Earth Environ Sci 986(1):012071 (IOP Publishing)

    Article  Google Scholar 

  • Lakhan MA, Ambreen A, SamreenRiaz A, Altaf Hussain L, Muhammad I, Salman Z, Anila K, Shella B, Sergij V, Viola V, Igor M (2023) Assessment of Karachi as an urban heat island threat through remote sensing and GIS techniques. Proc Pak Acad Sci: B. Life Environ Sci 60(3):463–475. https://doi.org/10.53560/PPASB(60-3)848

    Article  Google Scholar 

  • Liu J, Hagan DFT, Liu Y (2021) Global land surface temperature change (2003–2017) and its relationship with climate drivers: AIRS, MODIS, and ERA5-land based analysis. Remote Sens 13(1):44

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Mehmood MS, Zafar Z, Sajjad M, Hussain S, Zhai S, Qin Y (2023) Time series analyses and forecasting of surface urban heat island intensity using ARIMA Model in Punjab, Pakistan. Land 12(1):142

    Article  Google Scholar 

  • Mildrexler DJ, Zhao M, Running SW (2011) A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J Geophys Res: Biogeosci 116(G3). https://doi.org/10.1029/2010JG001486

  • Morit A (2022) Extreme heatwaves: surprising lessons from the record warmth. Nature 608:464–465

  • Ngarambe J, Nganyiyimana J, Kim I, Santamouris M, Yun GY (2020) Synergies between urban heat island and heat waves in Seoul: the role of wind speed and land use characteristics. PLoS ONE 15(12):e0243571

    Article  CAS  Google Scholar 

  • Ngarambe J, Oh JW, Su MA, Santamouris M, Yun GY (2021) Influences of wind speed, sky conditions, land use and land cover characteristics on the magnitude of the urban heat island in Seoul: an exploratory analysis. Sustain Cities Soc 71:102953

    Article  Google Scholar 

  • Nimac I, Herceg-Bulić I, Žuvela-Aloise M, Žgela M (2022) Impact of North Atlantic Oscillation and drought conditions on summer urban heat load - a case study for Zagreb. Int J Climatol 42(9):4850–4867. https://doi.org/10.1002/joc.7507

    Article  Google Scholar 

  • Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Bréon FM, . . ., Myneni RB (2012) Surface urban heat island across 419 global big cities. Environ Sci Technol 46(2):696–703. https://doi.org/10.1021/es2030438

  • Rahaman ZA, Kafy AA, Saha M, Rahim AA, Almulhim AI, Rahaman SN, ..., Al Rakib A (2022) Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Build Environ 222:109335

  • Rajagopal P, Priya RS, Senthil R (2022) A review of recent developments in the impact of environmental measures on urban heat island. Sustain Cities Soc 88:104279

  • Rana IA, Bhatti SS (2018) Lahore, Pakistan – Urbanization challenges and opportunities. Cities 72:348–355. https://doi.org/10.1016/j.cities.2017.09.014

    Article  Google Scholar 

  • Reiners P, Sobrino J, Kuenzer C (2023) Satellite-derived land surface temperature dynamics in the context of global change–A review. Remote Sens 15(7):1857

    Article  Google Scholar 

  • Rizvi SH, Fatima H, Alam K, Iqbal MJ (2021) The surface urban heat island intensity and urban expansion: a comparative analysis for the coastal areas of Pakistan. Environ Dev Sustain 23(4):5520–5537. https://doi.org/10.1007/s10668-020-00828-5

    Article  Google Scholar 

  • Sachindra D, Ng A, Muthukumaran S, Perera B (2016) Impact of climate change on urban heat island effect and extreme temperatures: a case-study. Q J R Meteorol Soc 142(694):172–186

    Article  Google Scholar 

  • Sajjad SH, Shirazi SA, Khan M, Raza A (2009) Urbanization effects on temperature trends of Lahore during 1950–2007. Int J Clim Chang Strateg Manag 1:274–281. https://doi.org/10.1108/17568690910977483

    Article  Google Scholar 

  • Saleem MS, Ahmad SR, Shafiq Ur R, Javed MA (2020) Impact assessment of urban development patterns on land surface temperature by using remote sensing techniques: a case study of Lahore, Faisalabad and Multan district. Environ Sci Pollut Res 27(32):39865–39878. https://doi.org/10.1007/s11356-020-10050-5

    Article  Google Scholar 

  • Santamouris M (2020) Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build 207:109482. https://doi.org/10.1016/j.enbuild.2019.109482

    Article  Google Scholar 

  • Shastri H, Barik B, Ghosh S, Venkataraman C, Sadavarte P (2017) Flip flop of day-night and summer-winter surface urban heat island intensity in India. Sci Rep 7(1):40178. https://doi.org/10.1038/srep40178

    Article  CAS  Google Scholar 

  • Shiru MS, Shahid S, Chung E-S, Alias N (2019) Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atmos Res 223:60–73. https://doi.org/10.1016/j.atmosres.2019.03.010

    Article  Google Scholar 

  • Sulla-Menashe D, Friedl MA (2018) User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. USGS, Reston, pp 1–18

    Google Scholar 

  • Tariq A, Mumtaz F, Zeng X, Baloch MYJ, Moazzam MFU (2022) Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using daytime and nighttime land surface temperatures MODIS and meteorological stations data. Remote Sens Appl: Soc Environ 27:100779. https://doi.org/10.1016/j.rsase.2022.100779

    Article  Google Scholar 

  • Tian L, Tao Y, Li M, Qian C, Li T, Wu Y, Ren F (2023) Prediction of land surface temperature considering future land use change effects under climate change scenarios in Nanjing City, China. Remote Sens 15(11):2914

    Article  Google Scholar 

  • Uddin ASMS, Khan N, Islam ARMT, Kamruzzaman M, Shahid S (2022) Changes in urbanization and urban heat island effect in Dhaka city. Theoret Appl Climatol 147(3):891–907. https://doi.org/10.1007/s00704-021-03872-x

    Article  Google Scholar 

  • Ullah I, Saleem F, Iyakaremye V, Yin J, Ma X, Syed S, Hina S, Asfaw TG, Omer A (2022) Projected changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earth’s Future 10(2):e2021EF002240. https://doi.org/10.1029/2021EF002240

    Article  Google Scholar 

  • Ullah I, Zeng X-M, Mukherjee S, Aadhar S, Mishra AK, Syed S, Ayugi BO, Iyakaremye V, Lv H (2023) Future amplification of multivariate risk of compound drought and heatwave events on South Asian population. Earth’s Future 11(12):e2023EF003688. https://doi.org/10.1029/2023EF003688

    Article  Google Scholar 

  • Vancutsem C, Ceccato P, Dinku T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114(2):449–465

    Article  Google Scholar 

  • Vermote E, Kotchenova S (2011) MODIS directional surface reflectance product: method, error estimates and validation. Land Remote Sensing and Global Environmental Change: NASA's Earth Observing System and the Science of ASTER and MODIS, 533–547

  • Wan Z (2007) Collection-5 MODIS land surface temperature products users’ guide. ICESS, University of California, Santa Barbara, p 400

  • Wang Y-R, Hessen DO, Samset BH, Stordal F (2022) Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens Environ 280:113181. https://doi.org/10.1016/j.rse.2022.113181

    Article  Google Scholar 

  • Wasif Ali NUAB, Amir S, Iqbal KMJ, Shah AA, Saqib Z, Akhtar N, . . . Tariq MAUR (2022) Analysis of land surface temperature dynamics in Islamabad by using MODIS remote sensing data. Sustainability 14(16):9894

  • Wong NH, Yu C (2005) Study of green areas and urban heat island in a tropical city. Habitat Int 29(3):547–558

    Article  Google Scholar 

  • Yadav N, Rajendra K, Awasthi A, Singh C, Bhushan B (2023) Systematic exploration of heat wave impact on mortality and urban heat island: a review from 2000 to 2022. Urban Clim 51:101622

    Article  Google Scholar 

  • Yasmeen Z, Afzaal M, Anjum M, Ahmad B (2017) Urban heat island in changing climate (A Case Study Of Karachi Heat Wave, 2015). Book: world environment day June 2017 by Pakistan Engineering Congress: In: pp 54–66

  • Yu P, Zhao T, Shi J, Ran Y, Jia L, Ji D, Xue H (2022) Global spatiotemporally continuous MODIS land surface temperature dataset. Sci Data 9(1):143. https://doi.org/10.1038/s41597-022-01214-8

    Article  Google Scholar 

  • Zhang J, Okin GS, Zhou B (2019) Assimilating optical satellite remote sensing images and field data to predict surface indicators in the Western US: assessing error in satellite predictions based on large geographical datasets with the use of machine learning. Remote Sens Environ 233:111382

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for this research, authorship, or publication.

Author information

Authors and Affiliations

Authors

Contributions

Both authors participated in the conceptualization of the research. They together gathered and pre-processed the data. S.S. developed the code for data analysis. N.K. generated results. The together analyzed the results. N.K. prepared the first draft of the article. Both authors contributed to revising and editing the draft. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Shamsuddin Shahid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 736 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Shahid, S. Urban heat island effect and its drivers in large cities of Pakistan. Theor Appl Climatol (2024). https://doi.org/10.1007/s00704-024-04959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00704-024-04959-x

Navigation