Skip to main content
Log in

Turbulent Transfer Between Street Canyons and the Overlying Atmospheric Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The turbulent exchange of momentum between a two-dimensional cavity and the overlying boundary layer has been studied experimentally, using hot-wire anemometry and particle image velocimetry (PIV). Conditions within the boundary layer were varied by changing the width of the canyons upstream of the test canyon, whilst maintaining the square geometry of the test canyon. The results show that turbulent transfer is due to the coupling between the instabilities generated in the shear layer above the canyons and the turbulent structures in the oncoming boundary layer. As a result, there is no single, unique velocity scale that correctly characterizes all the processes involved in the turbulent exchange of momentum across the boundary layer. Similarly, there is no single velocity scale that can characterize the different properties of the turbulent flow within the canyon, which depends strongly on the way in which turbulence from the outer flow is entrained into the cavity and carried round by the mean flow. The results from this study will be useful in developing simple parametrizations for momentum exchange in the urban canopy, in situations where the street geometry consists principally of relatively long, uniform streets arranged in grid-like patterns; they are unlikely to be applicable to sparse geometries composed of isolated three-dimensional obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bearman P (1972) Some measurements of the distortion of turbulence approaching a two-dimensional bluff body. J Fluid Mech 53(3): 451–467

    Article  Google Scholar 

  • Belcher SE (2005) Mixing and transport in urban areas. Philos Trans Roy Soc 363: 2947–2963

    Article  Google Scholar 

  • Castelain T (2006) Contrôle de jet par microjets impactants. Ph.D. thesis, Ecole Centrale de Lyon, 173 pp

  • Caton F, Britter R, Dalziel S (2003) Dispersion mechanism in a street canyon. Atmos Environ 37: 693–702

    Article  Google Scholar 

  • Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J Roy Meteorol Soc 130: 1349–1372

    Article  Google Scholar 

  • Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like obstacles. Boundary-Layer Meteorol 121: 491–519

    Article  Google Scholar 

  • Coceal O, Dobre A, Thomas TG (2007) Unsteady dynamics and organized structures from DNS over an idealized building canopy. Int J Climatol 27: 1943–1953

    Article  Google Scholar 

  • Finnigan JJ (1985) Turbulent transport in flexible plant canopies. In: Hutchinson B, Hicks B (eds) The forest–atmosphere interaction. D. Reidel Publishing Co., Dordrecht, pp 443–480

    Chapter  Google Scholar 

  • Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–572

    Article  Google Scholar 

  • Fouras A, Soria J (1998) Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp Fluids 25: 409–430

    Article  Google Scholar 

  • Garbero V, Salizzoni P, Soulhac L (2010) Experimental study of pollutant dispersion within a network of streets. Boundary-Layer Meteorol 136: 457–487

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38: 1262–1292

    Article  Google Scholar 

  • Hamlyn D, Hilderman T, Britter R (2007) A simple network approach to modelling dispersion among large groups of obstacles. Atmos Environ 41(28): 5848–5862

    Article  Google Scholar 

  • Harman IN, Belcher SE (2006) The surface energy balance and boundary layer over urban street canyons. Q J Roy Meteorol Soc 132: 2749–2768

    Article  Google Scholar 

  • Hunt J, Kawai H, Ramsay S, Pedrizetti G, Perkins R (1990) A review of velocity and pressure fluctuations in turbulent flows around bluff bodies. J Wind Eng Ind Aerodyn 35: 49–85

    Article  Google Scholar 

  • Huq P, Carrillo A, White LA, Redondo J, Dharmavaram S, Hanna SR (2007) The shear layer above and in urban canopies. J Appl Meteorol Climatol 46: 368–376

    Article  Google Scholar 

  • Irwin HP (1981) The design of spires for wind simulation. J Wind Eng Ind Aerodyn 7: 361–366

    Article  Google Scholar 

  • Jimènez J (2004) Turbulent flows over rough wall. Annu Rev Fluid Mech 36: 96–173

    Article  Google Scholar 

  • Kaimal J, Finnigan J (1994) Atmospheric boundary layer flow. Oxford University Press, New York, p 289

    Google Scholar 

  • Kim J, Baik J (2003) Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. J Wind Eng Ind Aerodyn 91: 309–329

    Article  Google Scholar 

  • Leonardi S, Orlandi P, Antonia R (2007) Properties of d- and k-type roughness in a turbulent channel. Phys Fluids 19: 125101

    Article  Google Scholar 

  • Louka P, Belcher SE, Harrison RG (2000) Coupling between air flow in streets and the well-developed boundary-layer aloft. Atmos Environ 34(16): 2613–2622

    Article  Google Scholar 

  • Perry A, Shofield WH, Joubert PN (1969) Rough wall turbulent boundary layers. J Fluid Mech 37: 383–413

    Article  Google Scholar 

  • Poggi D, Katul GC (2007) Turbulent flows on forested hilly terrain: the recirculation region. Q J Roy Meteorol Soc 133: 1027–1039

    Article  Google Scholar 

  • Raupach MR, Antonia R, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1): 1–25

    Article  Google Scholar 

  • Salizzoni P, Soulhac L, Mejean P, Perkins R (2008) Influence of a two scale surface roughness on a turbulent boundary layer. Boundary-Layer Meteorol 127(1): 97–110

    Article  Google Scholar 

  • Salizzoni P, Soulhac L, Mejean P (2009a) Street canyon ventilation and atmospheric turbulence. Atmos Environ 43: 5056–5067

    Article  Google Scholar 

  • Salizzoni P, Van Liefferinge R, Soulhac L, Mejean P, Perkins RJ (2009b) Influence of wall roughness on the dispersion of a passive scalar in a turbulent boundary layer. Atmos Environ 43(3): 734–748

    Article  Google Scholar 

  • Salizzoni P, Van Liefferinge R, Mejean P, Soulhac L, Perkins RJ (2010) Scaling of the vertical spreading of a plume of a passive tracer in a rough-wall neutral boundary-layer. Boundary-Layer Meteorol 135: 455–467

    Article  Google Scholar 

  • Simoëns S, Ayrault M, Wallace JM (2007) The flow across a street canyon with variable width—part 1: kinematic description. Atmos Environ 41: 9002–9017

    Article  Google Scholar 

  • Soulhac L (2000) Modélisation de la dispersion atmosphérique à l’intérieur de la canopée urbaine. Ph.D. thesis, Ecole Centrale de Lyon, 345 pp

  • Soulhac L, Puel C, Duclaux O, Perkins R (2003) Simulations of atmospheric pollution in Greater Lyon an example of the use of nested models. Atmos Environ 37: 5147–5156

    Article  Google Scholar 

  • Soulhac L, Perkins R, Salizzoni P (2008) Flow in a street canyon for any external wind direction. Boundary-Layer Meteorol 126: 365–388

    Article  Google Scholar 

  • Soulhac L, Garbero V, Salizzoni P, Mejean P, Perkins R (2009) Flow and dispersion in street intersections. Atmos Environ 43: 2981–2996

    Article  Google Scholar 

  • Stanislas M, Carlier J, Foucaut J, Dupont P (1998) Experimental study of a high Reynolds number turbulent boundary layer using DPIV. In: 9th International symposium on application of laser technology to fluid mechanics, Lisbon, Portugal

  • Townsend AA (1976) The structure of turbulent shear flows. Cambridge University Press, Cambridge, p 444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Salizzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salizzoni, P., Marro, M., Soulhac, L. et al. Turbulent Transfer Between Street Canyons and the Overlying Atmospheric Boundary Layer. Boundary-Layer Meteorol 141, 393–414 (2011). https://doi.org/10.1007/s10546-011-9641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9641-1

Keywords

Navigation