Skip to main content
Log in

Unravelling genome dynamics in Arabidopsis synthetic auto and allopolyploid species

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Polyploidization is a major genome modification that results in plant species with multiple chromosome sets. Parental genome adjustment to co-habit a new nuclear environment results in additional innovation outcomes. We intended to assess genomic changes in polyploid model species with small genomes using inter retrotransposons amplified polymorphism (IRAP) and retrotransposon microsatellite amplified polymorphism (REMAP). Comparative analysis among diploid and autotetraploid A. thaliana and A. suecica lines with their parental lines revealed a marginal fraction of novel bands in both polyploids, and a vast loss of parental bands in allopolyploids. Sequence analysis of some remodelled bands shows that A. suecica parental band losses resulted mainly from sequence changes restricted to primer domains. Moreover, in A. suecica, both parental genomes presented rearrangement frequencies proportional to their sizes. Overall rates of genomic remodelling events detected in A. suecica were similar to those observed in species with a large genome supporting the role of retrotransposons and microsatellite sequences in the evolution of most allopolyploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

amplified fragment length polymorphism

IRAP:

inter retrotransposons amplified polymorphism

LTR:

long terminal repeats

REMAP:

retrotransposon microsatellite amplified polymorphism

SSR:

simple sequence repeats

References

  • AGI (The Arabidopsis Genome Initiative): Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. — Nature 408: 796–815, 2000.

    Article  Google Scholar 

  • Ainouche, M.L.: Plant polyploidy. — New Phytol. 186 (Special Issue): 1–261, 2010.

    Article  PubMed  Google Scholar 

  • Beaulieu, J., Jean, M., Belzile, F.: The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. — Mol. Genet. Genomics. 281: 421–435, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M.D., Leitch, I.J.: Plant DNA C-values Database Release 6.0, Dec. 2012. http://data.kew.org/cvalues.

  • Bento, M., Gustafson, P., Viegas, W., Silva, M.: Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. — Theor. appl. Genet. 121: 489–497, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Bento, M., Pereira, S., Rocheta, M., Gustafson, P., Viegas, W., Silva, M.: Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. — PLoS ONE 3: e1402, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bento, M., Tomas, D., Viegas, W., Silva, M.: Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species. — Cytogenet. Genome Res. 140: 286–294, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Bomblies, K., Madlung, A.: Polyploidy in the Arabidopsis genus. — Chromosome Res. 22: 117–134, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L., D’Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F., Edwards, K.J., Bevan, M.W., Hall, N.: Analysis of the bread wheat genome using whole-genome shotgun sequencing. — Nature 491: 705–710, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Comai, L., Tyagi, A.P., Winter, K., Holmes-Davis, R, Reynolds, S.H., Stevens, Y., Byers, B.: Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. — Plant Cell 12: 1551–1567, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong, Y.Z., Liu, Z.L., Shan, X.H., Qiu, T., He, M.Y., Liu, B.: Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. — Russ. J. Genet. 41: 890–896, 2005.

    Article  CAS  Google Scholar 

  • Dvořák, J.: Triticeae genome structure and evolution. — In: Muehlbauer, G.J., Feuillet, C. (ed.): Genetics and Genomics of the Triticeae. Pp. 685–711. Springer, New York 2009.

    Google Scholar 

  • Eilam, T., Anikster, Y., Millet, E., Manisterski, J., Feldman, M.: Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. — Genome 51: 616–627, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, M., Levy, A.A.: Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes. — J. Genet. Genomics 36: 511–518, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-de-Carvalho, J., Chelaifa, H., Boutte, J., Poulain, J., Couloux, A., Wincker, P., Bellec, A., Fourment, J., Berge`s, H., Salmon, A., Ainouche, M.: Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. — Plant mol. Biol. 83: 591–606, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Hazzouri, R.M., Mohajer, A., Dejak, S.I., Otto, S.P., Wright, S.I.: Contrasting patterns of transposable-element insertion polymorphism and nucleotide diversity in autotetraploid and allotetraploid Arabidopsis species. — Genetics 179: 581–592, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henry, I.M., Dilkes, B.P., Tyagi, A., Gao, J., Christensen, B., Comai, L.: The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. — Plant Cell. 26: 181–194, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., Ni, P., Ren, Y., Zhu, H., Li, J., Lin, K., Jin, W., Fei, Z., Li, G., Staub, J., Kilian, A., Van der Vossen, E.A., Wu, Y., Guo, J., He, J., Jia, Z., Ren, Y., Tian, G., Lu, Y., Ruan, J., Qian, W., Wang, M., Huang, Q., Li, B., Xuan, Z., Cao, J., Asan, Wu, Z., Zhang, J., Cai, Q., Bai, Y., Zhao, B., Han, Y., Li, Y., Li, X., Wang, S., Shi, Q., Liu, S., Cho, W.K., Kim, J.Y., Xu, Y., Heller-Uszynska, K., Miao, H., Cheng, Z., Zhang, S., Wu, J., Yang, Y., Kang, H., Li, M., Liang, H., Ren, X., Shi, Z., Wen, M., Jian, M., Yang, H., Zhang, G., Yang, Z., Chen, R., Liu, S., Li, J., Ma, L., Liu, H., Zhou, Y., Zhao, J., Fang, X., Li, G., Fang, L., Li, Y., Liu, D., Zheng, H., Zhang, Y., Qin, N., Li, Z., Yang, G., Yang, S., Bolund, L., Kristiansen, K., Zheng, H., Li, S., Zhang, X., Yang, H., Wang, J., Sun, R., Zhang, B., Jiang, S., Wang, J., Du, Y., Li, S.: The genome of the cucumber, Cucumis sativus L. — Nat. Genet. 41: 1275–1281, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, B., Lou, Q., Wu, Z., Zhang, W., Wang, D., Mbira, K.G., Weng, Y., Chen, J.: Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride. — Plant mol. Biol. 77: 225–233, 2009.

    Article  Google Scholar 

  • Jiao, Y.N., Wickett, N.J., Ayyampalayam, S., Chanderbali, A.S., Landherr, L., Ralph, P.E., Tomsho, L.P., Hu, Y., Liang, H.Y., Soltis, P.S., Soltis, D.E., Clifton, S.W., Schlarbaum, S.E., Schuster, S.C., Ma, H., Leebens-Mack, J., De Pamphilis, C.W.: Ancestral polyploidy in seed plants and angiosperms. — Nature 473: 97–100, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R.N., Hegarty, M.: Order out of chaos in the hybrid plant nucleus. — Cytogenet. Genome Res. 126: 376–389, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kalendar, R., Grob, T., Regina, M., Suoniemi, A., Schulman, A.: IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. — Theor. appl. Genet. 98: 704–711, 1999.

    Article  CAS  Google Scholar 

  • Kalendar, R., Schulman, A.H.: IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. — Nat. Protocols 1: 2478–2484, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kashkush, K., Feldman, M., Levy, A.A.: Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. — Genetics 160: 1651–1659, 2002.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma, X.F., Fang, P., Gustafson, J.P.: Polyploidization-induced genome variation in triticale. — Genome 47: 839–848, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X.F., Gustafson, J.P.: Timing and rate of genome variation in triticale following allopolyploidization. — Genome 49: 950–958, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X.F., Gustafson, J.P.: Allopolyploidization-accommodated genomic sequence changes in triticale. — Ann. Bot. 101: 825–832, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Madlung, A., Tyagi, A.P., Watson, B., Jiang, H.M., Kagochi, T., Doerge, R.W., Martienssen, R., Comai, L.: Genomic changes in synthetic Arabidopsis polyploids. — Plant J. 41: 221–230, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Ozkan, H., Tuna, M., Galbrainth, D.W.: No DNA loss in autotetraploid of Arabidopsis thaliana. — Plant Breed. 125: 288–291, 2006.

    Article  CAS  Google Scholar 

  • Parisod, C., Salmon, A., Zerjal, T., Tenaillon, M., Grandbastien, M.A., Ainouche, M.: Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. — New Phytol. 184: 1003–1015, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Pecinka, A., Fang, W., Rehmsmeier, M., Levy, A.A., Scheid, O.M.: Polyploidization increases meiotic recombination frequency in Arabidopsis. — BMC Biol. 9: 24, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Peterson-Burch, B.D., Nettleton, D., Voytas, D.F.: Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. — Genome Biol. 5: R78, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  • Petit, M., Guidat, C., Daniel, J., Denis, E., Montoriol, E., Bui, Q.T., Lim, K.Y., Kovarik, A., Leitch, A.R., Grandbastien, M.A., Mhiri, C.: Mobilization of retrotransposons in synthetic allotetraploid tobacco. — New Phytol. 186: 135–147, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Pontes, O., Neves, N., Silva, M., Lewis, M.S., Madlung, A., Comai, L., Viegas, W., Pikaard, C.S.: Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. — PNAS 101: 18240–18245, 2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rakoczy-Trojanowska, M., Bolibok, H.: Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. — Cell. mol. Biol. Lett. 9: 221–238, 2004.

    CAS  PubMed  Google Scholar 

  • Renny-Byfield, S., Kovarik, A., Kelly, L.J., Macas, J., Novak, P., Chase, M.W., Nichols, R.A., Pancholi, M.R., Grandbastien, M.A., Leitch, A.R.: Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. — Plant J. 74: 829–839, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Rocheta, M., Cordeiro, J., Oliveira, M., Miguel, C.: PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster. — Planta 225: 551–562, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W.: Ribosomal DNA spacer-length polymorphisms in barley - Mendelian inheritance, chromosomal location, and population-dynamics. — PNAS 81: 8014–8018, 1984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santos, J.L., Alfaro, D., Sanchez-Moran, E., Armstrong, S.J., Franklin, F.C.H.: Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. — Genetics 165: 1533–1540, 2003.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shaked, H., Kashkush, K., Ozkan, H., Feldman, M., Levy, A.A.: Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. — Plant Cell 13: 1749–1759, 2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi, J.Q., Huang, S.M., Fu, D.H., Yu, J.Y., Wang, X.F., Hua, W., Liu, S.Y., Liu, G.H., Wang, H.Z.: Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced Brassica, Arabidopsis and other angiosperm species. — Plos One. 8: e59988, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sierro, N., Battey, J.N., Ouadi, S., Bovet, L., Goepfert, S., Bakaher, N., Peitsch, M.C., Ivanov, N.V.: Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. — Genome Biol. 14: R60, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Song, K.M., Lu, P., Tang, K.L., Osborn, T.C.: Rapid genome change in synthetic polyploids of Brassica and Its implications for polyploid evolution. — PNAS 92: 7719–7723, 1995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stöck, M., Lamatsch, D.K.: Trends in polyploidy research in animals and plants. — Cytogenet. Genome Res. 140: 2–4, 2013.

    Article  Google Scholar 

  • Yu, Z., Haberer, G., Matthes, M., Rattei, T., Mayer, K.F.X., Gierl, A., Torres-Ruiz, R.A.: Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. — PNAS 107: 17809–17814, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Silva.

Additional information

Acknowledgements: M. Bento was funded by a FCT (Fundação para a Ciência e a Tecnologia, Portugal) postdoctoral grant (SFRH/BPD/80550/2011), Diana Tomás was funded by a FCT doctoral scholarship (SFRH/BD/93156/2013), Manuela Silva by the FCT Investigator Programme (IF/00834/2014), and the research work was financed by FCT LEAF Unit (UID/AGR/04129/2013).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bento, M., Tomás, D., Viegas, W. et al. Unravelling genome dynamics in Arabidopsis synthetic auto and allopolyploid species. Biol Plant 59, 661–670 (2015). https://doi.org/10.1007/s10535-015-0536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0536-8

Additional key words

Navigation