Skip to main content

Advertisement

Log in

Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system ‘T6SS’ is a recently discovered molecular secretion system which is widely distributed in Gram-negative (−ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Wang B, Walker MD et al (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature 575:674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allsopp LP, Wood TE, Howard SA et al (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 114:7707–7712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alteri CJ, Himpsl SD, Zhu K et al (2017) Subtle variation within conserved effector operon gene products contributes to T6SS mediated killing and immunity. PLoS Pathog 13:1–22

    Article  Google Scholar 

  • Aubert Daniel F et al (2016) A Burkholderia type VI effector deamidates Rho GTPases to activate 699 the pyrin inflammasome and trigger inflammation. Cell Host Microbe 19(5):664–674

    Article  CAS  PubMed  Google Scholar 

  • Bachman V et al (2015) Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl Trop Dis 9:e0004031

    Article  Google Scholar 

  • Barret M, Egan F, Fargier E, Morrissey JP, O’Gara F (2011) Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology 157:1726–1739

    Article  CAS  PubMed  Google Scholar 

  • Basler M, Mekalanos JJ (2012) Type 6 secretion dynamics within and between bacterial cells. Science 337:815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basler M, Pilhofer M, Henderson PG, Jensen JG, Mekalanos J (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendor L, Weyrich LS, Linz B, Rolin OY, Taylor DL, Goodfield LL, Smallridge WE, Kennett MJ, Harvill ET (2015) Type VI secretion system of Bordetella bronchiseptica and adaptive immune components limit intracellular survival during infection. PLoS ONE 10:e0140743

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernal P, Allsopp LP, Filloux A et al (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 11:972–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal P, Furniss RCD, Fecht S, Leung RCY, Livia Spiga L, Despoina AI, Mavridou DAI, Filloux A (2021) A novel stabilization mechanism for the type VI secretion system sheath. Proc Natl Acad Sci USA 118(7):2008500118

    Article  Google Scholar 

  • Bernard CS et al (2011) Regulation of type VI secretion gene clusters by g54 and cognate enhancer binding proteins. J Bacteriol 193:2158–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8

    Article  CAS  PubMed  Google Scholar 

  • Bladergroen MR, Badelt K, Spaink HP (2003) Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 16:53–64

    Article  CAS  PubMed  Google Scholar 

  • Blondel CJ, Jimenez JC, Leiva LE, Alvarez SA, Pinto BI, Contreras F, Pezoa D, Santiviago CA, Contreras I (2013) The type VI secretion system encoded in Salmonella pathogenicity island 19 is required for Salmonella enterica serotype Gallinarum survival within infected macrophages. Infect Immun 81:1207–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondel CJ, Yang HJ, Castro B, Chiang S, Toro CS, Zaldı¨var M, Contreras I, Andrews-Polymenis HL, Santiviago CA, (2010) Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS ONE 2010:2015

    Google Scholar 

  • Blokesch M (2012) Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 14:1898–1912

    Article  CAS  PubMed  Google Scholar 

  • Bock D, Medeiros JM, Tsao HF, Penz T, Weiss GL, Aistleitner K et al (2017) In situ architecture, function, and evolution of a contractile injection system. Science 357:713–717

    Article  PubMed  PubMed Central  Google Scholar 

  • Borgeaud S et al (2015) The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67

    Article  CAS  PubMed  Google Scholar 

  • Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodmann M, Dreier RF, Broz P, Basler M (2017) Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 8:15853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröms JE, Sjöstedt A, Lavander M (2010) The role of the Francisella tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signalling. Front Microbiol 1:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks TM, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S (2013) Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288:7618–7625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E (2015) The type VI secretion TssEFGK-VgrG phage-like base plate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11:e1005545

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunet YR, Henin J, Celia H, Cascales E (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, Scorpio A, Milne TS, Dean RE, Fritz DL et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun 79:1512–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3:632–640

    Article  CAS  PubMed  Google Scholar 

  • Cantlay S, Haggerty K, Horzempa J (2020) OpiA, a type six secretion system substrate, localizes to the cell pole and plays a role in bacterial growth and viability in francisella tularensis LVS. J Bacteriol 202:e00048-20

  • Cascales E et al (2007) Comprehensive review of colicins, the best characterized of the bacteriocins. Colicin Biol Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  Google Scholar 

  • Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE et al (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci USA 113:3627–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng ZX, Gong QY, Wang Z, Chen ZG, Ye JZ, Li J et al (2017) Edward siellatarda tunes tricarboxylic acid cycle to evade complement-mediated killing. Front Immunol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng AT, Ottemann KM, Yildiz FH (2015) Vibrio cholerae response regulator VxrB controls colonization and regulates the type VI secretion system. PLoS Pathog 11:e1004933

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen WJJ, Kuo TYY, Hsieh FCC, Chen PYY, Wang CSS, Shih YLL et al (2016) Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 6:32950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Yang X, Shen X (2019) Confirmed and potential roles of bacterial T6SSs in the intestinal ecosystem. Front Microbiol 10:1484

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien CF, Liu CY, Lu YY et al (2020) HSI-II gene cluster of Pseudomonas syringae pv. tomato DC3000 encodes a functional type VI secretion system required for interbacterial competition. Front Microbiol 11:1–14

    Article  Google Scholar 

  • Chou S et al (2012) Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep 1:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow J, Mazmanian SK (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cianfanelli FR, AlcoforadoDiniz J, Guo M, De Cesare V, Trost M, Coulthurst SJ (2016) VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 12:e1005735

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyne MJ, Roelofs KG, Comstock LE (2016) Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 17:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE (2014) Evidence of extensive DNA transfer between bacteroidales species within the human gut. Mbio 5:e01305–e01314

    Article  PubMed  PubMed Central  Google Scholar 

  • Coulthurst S (2019) The type VI secretion system: a versatile bacterial weapon. Microbiology 165:503–515

    Article  CAS  PubMed  Google Scholar 

  • Dalia AB et al (2014) Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. Mol Bio 5:e01028-e1113

    Google Scholar 

  • Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138

    Article  CAS  PubMed  Google Scholar 

  • de Bruin OM, Ludu JS, Nano FE (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Decoin V, Barbey C, Bergeau D et al (2014) A type VI secretion system is involved in Pseudomonas fluorescens bacterial competition. PLoS ONE 9(2):e89411

    Article  PubMed  PubMed Central  Google Scholar 

  • De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits TH (2011) Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genom 12:576

    Article  Google Scholar 

  • de Moraes MH, Hsu F, Huang D et al (2021) An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations. Elife 10:1–78

    Article  Google Scholar 

  • de Pace F, Nakazato G, Pacheco A, De Paiva JB, Sperandio V, Da Silveira WD (2010) The type VI secretion system plays a role in type 1 fimbriae expression and pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun 78:4990–4998

    Article  PubMed  PubMed Central  Google Scholar 

  • de Pace F, de Paiva JB, Nakazato G, Lancellotti M, Sirsili MP, Stehling EG, da Silveira WD, Sperandio V (2011) Characterization of icmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology 157:2954–2962

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ (2013a) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in vibrio cholerae. Proc Natl Acad Sci USA 110:2623–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C et al (2013b) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J 454:59–68

    Article  CAS  PubMed  Google Scholar 

  • Douzi B, Spinelli S, Blangy S, Roussel A, Durand E, Brunet YR et al (2014) Crystal structure and self-interaction of the type VI secretion tail tube protein from enteroaggregative Escherichia coli. PLoS ONE 9:e86918

    Article  PubMed  PubMed Central  Google Scholar 

  • Douzi B, Brunet YR, Spinelli S, Lensi V, Legrand P, Blangy S et al (2016) Structure and specificity of the type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Sci Rep 6:34405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand E, Zoued A, Spinelli S, Watson PJ, Aschtgen MS, Journet L, Cambillau C, Cascales E (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287:14157–14168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta P, Jijumon AS, Mazumder M, Dileep D, Mukhopadhyay AK, Gourinath S et al (2019) Presence of actin binding motif in VgrG-1 toxin of Vibrio cholerae reveals the molecular mechanism of actin cross-linking. Int J Biol Macromol 133:775–785

    Article  CAS  PubMed  Google Scholar 

  • Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM et al (2016) Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intra macrophage growth. Cell Host Microbe 20:573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feria JM, Valvano MA (2020) An overview of anti-eukaryotic effectors. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.584751

    Article  Google Scholar 

  • Flaugnatti N, Le TTH, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Journet L (2016) A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99:1099–1118

    Article  CAS  PubMed  Google Scholar 

  • Flaugnatti N, Rapisarda C, Rey M, Beauvois SG, Nguyen VA, Canaan S, Journet L (2020) Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike. EMBO J 30:e104129

    Google Scholar 

  • Forster A, Planamente S, Manoli E, Lossi NS, Freemont PS, Filloux A (2014) Coevolution of the ATPase ClpV, the sheath proteins TssB and TssC, and the accessory protein TagJ/HsiE1 distinguishes type VI secretion classes. J Biol Chem 289:33032–33043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French CT, Toesca IJ, Wu TH, Teslaa T, Beaty SM, Wong W, Liu M, Schroder I, Chiou PY, Teitell MA et al (2011) Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci USA 108:12095–12100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y et al (2013) Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14:652–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Bayona L, Coyne MJ, Comstock LE (2021) Mobile Type VI secretion system loci of the gut Bacteroidales display extensive intra-ecosystem transfer, multi-species spread and geographical clustering. PLoS Genet. https://doi.org/10.1371/journal.pgen.1009541

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavrilin MA, Abdelaziz DHA, Mostafa M, Abdulrahman BA, Grandhi J, Akhter A, Khweek AA, Aubert DF, Valvano MA, Wewers MD et al (2012) Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol 188:3469–3477

    Article  CAS  PubMed  Google Scholar 

  • Geli V, Baty D, Pattus F, Lazdunski C (1989) Topology and function of the integral membrane protein conferring immunity to colicin A. Mol Microbiol 3:679–687

    Article  CAS  PubMed  Google Scholar 

  • Geller AM, Pollin I, Zlotkin D, Danov A, Nachmias N, Andreopoulos WB, Shemesh K, Levy A (2021) The extracellular contractile injection system is enriched in environmental microbes and associates with numerous toxins. Nat Commun 12:3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haapalainen M, Mosorin H, Dorati F et al (2012) Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J Bacteriol 194:4810–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachani A, Wood TE, Filoux A (2017) Type VI secretion and anti-host effectors. Curr Opin Microbiol 29:81–93

    Article  Google Scholar 

  • Hare JM, Ferrell JC, Witkowski TA, Grice AN (2014) Prophage induction and differential RecA and UmuDAb transcriptome regulation in the DNA damage responses of Acinetobacter baumannii and Acinetobacter baylyi. PLoS ONE 9(4):e93861

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho BT, Basler M, Mekalanos JJ (2013) Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 342:250–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopf V, Gohler A, Eske-Pogodda K, Bast A, Steinmetz I, Breitbach K (2014) BPSS1504, a cluster 1 Type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun 82:2006–2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Houot L et al (2010) The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 192:3055–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T et al (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS ONE 4:e6734

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T et al (2012) Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 80:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465–1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalindamar S, Kordon AO, Abdelhamed H, Tan W, Pinchuk LM, Lesya A (2019) Edward siellaictaluri evpP is required for colonization of channel catfish ovary cells and necrosis in anterior kidney macrophages. Cell Microbiol 19:e13135

    Google Scholar 

  • Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitaoka M et al (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol 193:6471–6482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskiniemi S et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA 110:7032–7037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kube S, Kapitein N, Zimniak T, Herzog F, Mogk A, Wendler P (2014) Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8:20–30

    Article  CAS  PubMed  Google Scholar 

  • Kudryashev M, Wang RYR, Brackmann M, Scherer S, Maier T, Baker D et al (2015) Structure of the type VI secretion system contractile sheath. Cell 160:952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lertpiriyapong K, Gamazon ER, Feng Y, Park DS, Pang J, Botka G, Graffam ME, Ge Z, Fox JG (2012) Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS ONE 7(8):e42842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lery LMS, Frangeul L, Tomas A, Passet V, Almeida AS, BialekDavenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 12:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesic B, Starkey M, He J et al (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155:2845–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JM, Deveson Lucas D, Harper M, Boyce JD (2019) Systematic identification and analysis of Acinetobacter baumannii type VI secretion system effector and immunity components. Front Microbiol 10:2440

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Moore R, Wilton M, Wong MJQ, Lam L, Dong TG (2015) Identification of divergent type VI secretion effectors using aconserved chaperone domain. Proc Natl Acad Sci USA 112:9106–9111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Zhang W, Cheng J et al (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 8:14888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Coulthurst SJ, Pritchard L et al (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plantpathogen Pectobacterium atrosepticum. PLoS Pathog 4(6):e100093

    Article  Google Scholar 

  • Logger L, Aschtgen MS, Guérin M, Cascales E, Durand E (2016) Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J Mol Biol 428:4424–4437

    Article  CAS  PubMed  Google Scholar 

  • Lossi NS, Manoli E, Forster A et al (2013) The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath like structure. J Biol Chem 288:7536–7548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Scrudato M, Blokesch M (2013) A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res 41:3644–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loutet SA, Valvano MA (2010) A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 78:4088–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma LS, Hachani A, Lin JS et al (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma AT, McAuley SB, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma AT, Mekalanos JJ (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci USA 107:4365–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Pan Z, Huang J, Sun M, Lu C, Yao H (2017) The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence 8:1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK (2020) Molecular characterization of mega plasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards. Sci Rep 10:12514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchi M, Boutin M, Gazengel K, Rispe C, Gauthier J, Lebreton L et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep 5:393–403

    Article  CAS  PubMed  Google Scholar 

  • Mattinen L, Nissinen R, Riipi T, Kalkkinen N, Pirhonen M (2007) Host extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics 7:3527–3537

    Article  CAS  PubMed  Google Scholar 

  • Meibom KL (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827

    Article  CAS  PubMed  Google Scholar 

  • Meibom KL et al (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101:2524–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger LC et al (2016) Independent regulation of Type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep 15:951–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB et al (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314

    Article  CAS  PubMed  Google Scholar 

  • Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13:3128–3138

    Article  CAS  PubMed  Google Scholar 

  • Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder DT, Cooper CA, Coombes BK (2012) Type VI secretion system associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun 80:1996–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nano FE, Schmerk C (2007) The Francisella pathogenicity island. Ann NY Acad Sci 1105:122–137

    Article  CAS  PubMed  Google Scholar 

  • Nano FE, Zhang N, Cowley SC, Klose KE, Cheung KK, Roberts MJ et al (2004) A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186:6430–6436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from waste water–a model system in environmental biotechnology. Curr Opin Biotechnol 23:452–459

    Article  CAS  PubMed  Google Scholar 

  • Nykyri J, Niemi O, Koskinen P et al (2012) Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 8(11):e1003013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezoa D, Blondel CJ, Silva CA, Yang HJ, Andrews-Polymenis HL, Santiviago CA, Contreras I (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res 45:1–9

    Article  Google Scholar 

  • Pezoa D, Yang HJ, Blondel CJ, Santiviago CA, Andrews Polymenis HL, Contreras I (2013) The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken. PLoS ONE 8(5):e63917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrosiuk A et al (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 286:30010–30021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A (2016) TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 35:1613–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole SJ et al (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet 7:e1002217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanschagrin F, Lau GW, Levesque RC (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5:1294–1308

    Article  CAS  PubMed  Google Scholar 

  • Pukatzki S et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103:1528–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104:15508–15513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Schwartz N, de Souza SM, Zhang J, Orth K, Salomon D (2017) Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Rep 18:1978–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repizo GD, Gagne S, Foucault-Grunenwald ML, Borges V, Charpentier X, Limansky AS, Gomes JP, Viale AM, Salcedo SP (2015) Differential role of the T6SS in Acinetobacter baumannii virulence. PLoS One 10:1–20

    Article  Google Scholar 

  • Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081

    Article  PubMed  Google Scholar 

  • Roesch LF et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. Isme J 1:283–290

    Article  CAS  PubMed  Google Scholar 

  • Ross BD, Verster AJ, Radey MC et al (2019) Human gut bacteria contain acquired interbacterial defence systems. Nature 575:224–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers A et al (2016) The LonA protease regulates biofilm formation, motility, virulence, and the type VI secretion system in Vibrio cholerae. J Bacteriol 198:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogge ML, Thune RL (2011) Regulation of the Edward siellaictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl Environ Microbiol 77:4293–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio T, Oyanedel D, Labreuche Y et al (2019) Species-specific mechanisms of cytotoxicity toward immune cells determine the successful outcome of Vibrio infections. Proc Natl Acad Sci USA 116:14238–14247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell AB et al (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496:508–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell AB et al (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD (2014) A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomon D, Gonzalez H, Updegraff BL et al (2013) Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One 8:e61086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomon D, Klimko JA, Trudgian DC et al (2015) Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog 11:1–20

    Article  CAS  Google Scholar 

  • Sana TG, Flaugnatti N, Lugo KA et al (2016) Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 113:5044–5051

    Article  Google Scholar 

  • Sana TG, Soscia C, Tonglet CMM, Garvis S, Bleve S (2013) Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS ONE 8:e76030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E (2018) In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 3:1304

    Article  CAS  PubMed  Google Scholar 

  • Sarris PF, Skandalis N, Kokkinidis M et al (2010) In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol Plant Pathol 11:795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savary S, Ficke A, Aubertot JN et al (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537

    Article  Google Scholar 

  • Schlieker C, Zentgraf H, Dersch P, Mogk A (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 386:1115–1127

    Article  CAS  PubMed  Google Scholar 

  • Schneider JP et al (2019) Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems. EMBO J 38:e100825

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz S, Hood RD, Mougous JD (2010a) What is type VI secretion doing in all those bugs? Trends Microbiol 18:531–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD (2010b) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz S, Singh P, Robertson JD, LeRoux M, Skerrett SJ, Goodlett DR et al (2014) VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82:1445–1452

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Bassler BL (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol 92:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan F (2002) The host–microbe interface within the gut. Best Pract Res Clin Gastroenterol 16:915–931

    Article  PubMed  Google Scholar 

  • Sha J, Rosenzweig JA, Kozlova EV, Wang S, Erova TE, Kirtley ML, van Lier CJ, Chopra AK (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology 159:1120–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikuma NJ, Yildiz FH (2009) Identification and characterization of OscR, a transcriptional regulator involved in Osmolarity adaptation in Vibrio cholerae. J Bacteriol 191:4082–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shyntum DY, Theron J, Venter SN, Moleleki LN, Toth IK, Coutinho TA (2015) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact 28:420–431

    Article  CAS  PubMed  Google Scholar 

  • Si M, Zhao C, Burkinshaw B et al (2017) Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci USA 114:2233–2242

    Article  Google Scholar 

  • Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M, Catalano CE, Mougous JD (2013) Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51:584–593

    Article  CAS  PubMed  Google Scholar 

  • Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE, Basler M et al (2020) The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol 18:3000720

    Article  Google Scholar 

  • Soria-Bustos J et al (2020) Two type VI secretion systems of Enterobacter cloacae are required for bacterial competition, cell adherence and intestinal colonization. Front Microbiol. https://doi.org/10.3389/fmicb.2020.560488

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasa Rao PS, Yamada Y, Yuen PT, Ka YL (2004) Use of proteomics to identify novel virulence determinants that are required for Edward siellatarda pathogenesis. Mol Microbiol 53:573–586

    Article  Google Scholar 

  • Steele MI, Kwong WK, Whiteley M et al (2017) Diversification of type VI secretion system toxins reveals ancient antagonism among Bee gut microbes. Lindow SE (ed). Mol Biol 8:146–155

    Google Scholar 

  • Storey D, Mcnally A, Strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B et al (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog 16:e1007969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44:344–361

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Yang DH, Wang Z, Zheng X, Zhang YX, Liu Q (2019) EvpP inhibits neutrophils recruitment via Jnk-caspy inflammasome signalling in vivo. Fish Shellfish Immun 92:851–860

    Article  CAS  Google Scholar 

  • Tamber S, Montgomery A, Eloranta K et al (2020) Enumeration and survival of Salmonella enterica in live oyster shellstock harvested from Canadian waters. J Food Prot 83:6–12

    Article  PubMed  Google Scholar 

  • Tian Y, Zhao Y, Wu X, Liu F, Hu B, Walcott RR (2015) The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol Plant Pathol 16:38–47

    Article  CAS  PubMed  Google Scholar 

  • Toesca IJ, French CT, Miller JF (2014) The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by Pseudomallei group Burkholderia species. Infect Immun 82:1436–1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Townsley L et al (2016) Response of Vibrio cholerae to low-temperature shifts: CspV regulation of type VI secretion, biofilm formation, and association with zooplankton. Appl Environ Microbiol 82:4441–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trunk K, Peltier J, Liu Y et al (2018) The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 3(8):920–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unni R, Pintor KL, Diepold A, Unterweger D (2022) Presence and absence of type VI secretion systems in bacteria. Microbiology. https://doi.org/10.1099/mic.0.001151

    Article  PubMed  Google Scholar 

  • Unterweger D, Miyata ST, Bachmann V et al (2014) The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 5:1–9

    Article  Google Scholar 

  • Unterweger D, Kostiuk B, Ötjengerdes R, Wilton A, Diaz-Satizabal L, Pukatzki S (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 34:2198–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacheron J, Pechy-Tarr M, Brochet S et al (2019) T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J 13:1318–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan B, Zhang Q, Ni J, Li S, Wen D, Li J et al (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog 13:e1006246

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y et al (2015) Type VI secretion System transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog 11:e1005020

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Brodmann M, Basler M (2019) Assembly and subcellular localization of bacterial type VI secretion systems. Ann Rev Microbiol 73:621–638

    Article  CAS  Google Scholar 

  • Wang T, Hu Z, Du X et al (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors. Mol Microbiol 114:308–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Luo Z, Du H, Xu S, Ni B, Zhang H, Sheng X, Xu H, Huang X (2011) Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol 63:22–31

    Article  CAS  PubMed  Google Scholar 

  • Watve SS et al (2015) CytR Is a global positive regulator of competence, type VI secretion, and chitinases in Vibrio cholerae. PLoS ONE 10:e0138834

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ et al (2016) Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. Mbio 7:e01253-e1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wettstadt S, Wood TE, Fecht S, Filloux A (2019) Delivery of the Pseudomonas aeruginosa phospholipase effectors PldA and PldB in a VgrG- and H2–T6SS-dependent manner. Front Microbiol 10:1718

    Article  PubMed  PubMed Central  Google Scholar 

  • Weyrich LS, Rolin OY, Muse SJ, Park J, Spidale N, Kennett MJ, Hester SE, Chen C, Dudley EG, Harvill ET (2012) A type VI secretion system encoding locus is required for Bordetella bronchiseptica immunomodulation and persistence in vivo. PLoS ONE 7(10):e45892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wexler AG, Bao Y, Whitney JC et al (2016) Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc Natl Acad Sci USA 113:3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 288:26616–26624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR et al (2015) An interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ, Radey MC, Kulasekara HD, Ching MQ, Bullen NP, Bryant D et al (2017) A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife 6:e26938

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood TE, Howard SA, Wettstadt S, Filloux A (2019) PAAR proteins act as the ‘sorting hat’ of the type VI secretion system. Microbiology 165(11):203–218

    Article  Google Scholar 

  • Wu HY, Chung PC, Shih HW et al (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190:2841–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S et al (2011) Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 193:1953–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S et al (2014) Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 91:326–347

    Article  CAS  PubMed  Google Scholar 

  • Yildiz FH et al (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Yang H, Li J, Zhang P, Wu B, Zhu B, Zhang Y, Fang W (2012) Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol 194:827–835

    Article  CAS  PubMed  Google Scholar 

  • Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol 193:351–363

    CAS  PubMed  Google Scholar 

  • Zhang L, Xu J, Xu J, Zhang H, He L, Feng J (2014) TssB is essential for virulence and required for type VI secretion system in Ralstonia solanacearum. Microb Pathog 74:1–7

    Article  PubMed  Google Scholar 

  • Zhang H, Gao Z, Q, Su XD, Dong YH, (2012) Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett 586:3193–3199

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem 288:5928–5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Caro F, Robins W et al (2018) Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J et al (2010) Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA 107:21128–21133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Tao J, Yu H, Ni J, Zeng L, Teng Q, Kim KS, Zhao GP, Guo X, Yao Y (2012) Hcp family proteins secreted via the type VI secretion system co-ordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun 80:1243–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y et al (2019) Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli. Virulence 10:118–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoued A, Durand E, Bebeacua C, Brunet YR, Douzi B, Cambillau C et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288:27031–32704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M et al (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531:59–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the Govt. of India for providing the DBT-Ramalingswami Re-entry Fellowship and Department of Bioengineering and Biotechnology, BIT Mesra for necessary facilities.

Funding

Ministry of Science and Technology, India, BT/RLF-2020-21, Rajnish Prakash Singh.

Author information

Authors and Affiliations

Authors

Contributions

RPS: writing—original draft, supervision, project administration, funding acquisition and resources. KK: revision & editing.

Corresponding author

Correspondence to Rajnish Prakash Singh.

Ethics declarations

Confict of interest

These authors declare that they have no conflict of interest.

Consent for publication

All authors have read the manuscript and agreed to publish.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.P., Kumari, K. Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality. Biotechnol Lett 45, 309–331 (2023). https://doi.org/10.1007/s10529-023-03354-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-023-03354-2

Keywords

Navigation