Skip to main content
Log in

Genetic Diversity in Various Accessions of Pineapple [Ananas comosus (L.) Merr.] Using ISSR and SSR Markers

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Inter simple sequence repeat (ISSR) and simple sequence repeat (SSR) markers were used to assess the genetic diversity of 36 pineapple accessions that were introduced from 10 countries/regions. Thirteen ISSR primers amplified 96 bands, of which 91 (93.65%) were polymorphic, whereas 20 SSR primers amplified 73 bands, of which 70 (96.50%) were polymorphic. Nei’s gene diversity (h = 0.28), Shannon’s information index (I = 0.43), and polymorphism information content (PIC = 0.29) generated using the SSR primers were higher than that with ISSR primers (h =  0.23, I = 0.37, PIC = 0.24), thereby suggesting that the SSR system is more efficient than the ISSR system in assessing genetic diversity in various pineapple accessions. Mean genetic similarities were 0.74, 0.61, and 0.69, as determined using ISSR, SSR, and combined ISSR/SSR, respectively. These results suggest that the genetic diversity among pineapple accessions is very high. We clustered the 36 pineapple accessions into three or five groups on the basis of the phylogenetic trees constructed based on the results of ISSR, SSR, and combined ISSR/SSR analyses using the unweighted pair-group with arithmetic averaging (UPGMA) method. The results of principal components analysis (PCA) also supported the UPGMA clustering. These results will be useful not only for the scientific conservation and management of pineapple germplasm but also for the improvement of the current pineapple breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aradhya MK, Zee F, Manshardt RM (1994) Isozyme variation in cultivated and wild pineapple. Euphytica 79:87–99

    Article  CAS  Google Scholar 

  • Baranski R, Maksylewicz-Kaul A, Nothnagel T, Cavagnaro PF, Simon PW, Grzebelus D (2012) Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genet Res Crop Evol 59:163–170

    Article  Google Scholar 

  • Boczkowska M, Bulińska-Radomska Z, Nowosielski J (2012) AFLP analysis of genetic diversity in five accessions of Polish runner bean (Phaseolus coccineus L.). Genet Res Crop Evol 59:473–478

    Article  CAS  Google Scholar 

  • Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Article  CAS  Google Scholar 

  • Collins JL (1960) The pineapple, botany, utilisation, cultivation. Leonard Hill Ltd, London

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dewald MG, Moore GA, Sherman WB, Evans MH (1988) Production of pineapple plants in vitro. Plant Cell Rep 7:535–537

    Article  CAS  PubMed  Google Scholar 

  • Duval MF, d’Eeckenbrugge GC (1993) Genetic variability in the genus Ananas. Acta Hort 334:27–32

    Article  Google Scholar 

  • Duval MF, Noyer JL, Perrier X, d’Eeckenbrugge GC, Hamon P (2001) Molecular diversity in pineapple assessed by RFLP markers. Theor Appl Genet 102:83–90

    Article  CAS  Google Scholar 

  • Feng SP, Tong HL, Chen Y, Wang JY, Chen YY, Sun GM, He JH, Wu YT (2013) Development of pineapple microsatellite markers and germplasm genetic diversity analysis. Biomed Res Int. doi:10.1155/2013/317912

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAOSTAT) (2014) FAO statistic division. http://faostat.fao.org/faostat/en/#data/QC

  • Godt MJW, Hamrick JL, Meier A (2004) Genetic diversity in Cymophyllus fraserianus (Cyperaceae), a rare monotypic genus. Genetica 122:207–215

    Article  CAS  PubMed  Google Scholar 

  • Goulão L, Oliveira CM (2001) Molecular characterisation of cultivars of apple (Malus × domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122:81–89

    Article  Google Scholar 

  • Grativol C, Lira-Medeiros CF, Hemerly AS, Gomes FPC (2011) High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Mol Biol Rep 38:4245–4256

    Article  CAS  PubMed  Google Scholar 

  • Hammami R, Jouve N, Soler C, Frieiro E, González JM (2014) Genetic diversity of SSR and ISSR markers in wild populations of Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). Plant Syst Evol 300:2029–2040

    Article  Google Scholar 

  • He GH, Meng RH, Newman M, Gao GQ, Pittman RN, Prakash CS (2003) Microsatellites as DNA markers in cultivated peanut. BMC Plant Biol 3(1):3–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidetoshi I, Hitoshi N, Keita H, Mitsuo A, Takao N (2009) Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genet Res Crop Evol 56:201–209

    Article  Google Scholar 

  • Ipek A, Yilmaz K, Sıkıcı P, Tangu NA, Oz AT, Bayraktar M, Ipek M, Gulen H (2016) SNP discovery by GBS in olive and the construction of a high-density genetic linkage map. Biochem Genet 54:313–325

    Article  CAS  PubMed  Google Scholar 

  • Kato CY, Nagai C, Moore PH, Zee F, Kim MS, Steiger DL, Ming R (2004) Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers. Genet Res Crop Evol 51:815–825

    Article  CAS  Google Scholar 

  • Leal F (1990) On the validity of Ananas monstruosus. J Bromel Soc 40:246–249

    Google Scholar 

  • Li HY, Li ZY, Cai LY, Shi WG, Mi FG, Shi FL (2013) Analysis of genetic diversity of Ruthenia medic (Medicago ruthenica (L.) Trautv.) in Inner Mongolia using ISSR and SSR markers. Genet Res Crop Evol 60:1687–1694

    Article  CAS  Google Scholar 

  • Manetti LM, Delaporte RH, Laverde JA (2009) Metabólitos secundários da família Bromeliaceae. Quim Nova 32:1885–1897

    Article  CAS  Google Scholar 

  • Marques G, Gutiérrez A, Del RJC (2007) Chemical characterization of lignin and lipophilic fractions from leaf fibers of curaua (Ananas erectifolius). J Agric Food Chem 55:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. CMLS Cell Mol Life Sci 58:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144

    Article  CAS  Google Scholar 

  • Mishra PK, Ram RB, Kumar N (2015) Genetic variability, heritability, and genetic advance in strawberry (Fragaria × ananassa Duch.). Turk J Agric For 39:451–458

    Article  Google Scholar 

  • Morrison SE (1973) Journals and other documents of the life and voyages of Christopher Columbus. Heritage Press, New York

    Google Scholar 

  • Nemli S, Kianoosh T, Tanyolac MB (2015) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon-based interprimer binding sites (iPBSs) markers. Turk J Agric For 39:940–948

    Article  Google Scholar 

  • Noyer JL, Lanaud C, d’Eeckenbrugge D, Duval MF (1997) RFLP study on rDNA variability in Ananas genus. Acta Hort 425:153–159

    Article  CAS  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Pérez G, Mbogholi A, Sagarra F, Aragón C, González J, Isidrón M, Lorenzo JC (2011) Morphological and physiological characterization of two new pineapple somaclones derived from in vitro culture. In Vitro Cell Dev Biol 47:428–433

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. Exeter Software, New York

  • Roldan-Ruiz DJ, Van BE, Depicker A, De LM (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  CAS  Google Scholar 

  • Ruas CF, Ruas PM, Cabral JRS (2001) Assessment of genetic relatedness of the genera Ananas and Pseudananas confirmed by RAPD markers. Euphytica 119(3):245–252

    Article  CAS  Google Scholar 

  • Samuels G (1970) Pineapple cultivars. Am Soc Hort Sci Proc 14:13–24

    Google Scholar 

  • Smith LB, Downs RJ (1979) Bromelioidees (Bromeliaceae). Flora Neotropica, Monograph 14(pt 3):2048–2064

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Souza EH, Souza FVD, Costa CMAP, Costa DS Jr, Santos-Serejo JA, Amorim EP, Ledo CAS (2012) Genetic variation of the Ananas genus with ornamental potential. Genet Res Crop Evol 59:1357–1376

    Article  Google Scholar 

  • Tsou C, Li L, Vijayan K (2016) The intra-familial relationships of Pentaphylacaceae as revealed by DNA sequence analysis. Biochem Genet 54:270–282

    Article  CAS  PubMed  Google Scholar 

  • Viruel MA, Escribano P, Barbieri M, Ferri M, Hormaza JI (2005) Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Mol Breed 15:383–393

    Article  CAS  Google Scholar 

  • Wakasa K (1977) Use of tissue culture for propagation and mutant induction in Ananas comosus. Nat Inst Agr Sc Annual Report, Tokyo

    Google Scholar 

  • Wakasa K (1979) Variation in the plants differentiated from the tissue culture of pineapple. Jpn J Breed 29:13–22

    Article  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC–dA)n (dG–dT)n polymorphism. Genomics 7:524–530

    Article  CAS  PubMed  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POP-GENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton

    Google Scholar 

  • Zhang Q, Li J, Zhao YB, Korban SS, Han YP (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546

    Article  CAS  Google Scholar 

  • Zhao WG, Zhou ZH, Miao XX, Zhang Y, Wang SB, Huang JH, Xiang H, Pan YL, Huang YP (2007) A comparison of genetic variation among wild and cultivated Morus species (Moraceae:Morus) as revealed by ISSR and SSR markers. Biodivers Conserv 16:275–290

    Article  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genomic fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Sezai Ercisli (Ataturk University Agricultural Faculty Department of Horticulture 25240 Erzurum, Turkey DRARO) for revising this manuscript. The Central Level Scientific Research Unit Public Welfare Project of China (Grant No. 1630032013025) and Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (17CXTD10) supported this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-hu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Js., He, Jh., Chen, Hr. et al. Genetic Diversity in Various Accessions of Pineapple [Ananas comosus (L.) Merr.] Using ISSR and SSR Markers. Biochem Genet 55, 347–366 (2017). https://doi.org/10.1007/s10528-017-9803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-017-9803-z

Keywords

Navigation