Skip to main content
Log in

Halomarina salina sp. nov., isolated from a marine solar saltern

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A halophilic archaeal strain, designated ZS-57-ST, was isolated from Zhoushan marine solar saltern, China. Cells were observed to be pleomorphic, stained Gram-negative and formed red pigmented colonies on agar plates. Optimal growth was obtained at 3.9 M NaCl (range 1.4–4.8 M), 0.3 M MgCl2 (range 0–1.0 M), 30 °C (range 20–55 °C) and pH 6.5–7.5 (range 5.5–9.0). The cells were found to lyse in distilled water and the minimal NaCl concentration to prevent cell lysis was determined to be 5 % (w/v). The major polar lipids were identified as C20C20 and C20C25 diether derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, glucosyl mannosyl glucosyl diether and two unidentified glycolipids. The 16S rRNA gene and rpoB′ gene of strain ZS-57-ST were phylogenetically related to the corresponding genes of Halomarina oriensis JCM 16495T (98.2 and 93.7 % similarities, respectively). The DNA G+C content of strain ZS-57-ST was determined to be 67.1 mol% (T m). The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain ZS-57-ST (=CGMCC 1.12543T = JCM 30039T) represents a new species of the genus Halomarina, for which the name Halomarina salina sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Cui H-L, Lin Z-Y, Dong Y, Zhou P-J, Liu S-J (2007) Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206

    Article  CAS  PubMed  Google Scholar 

  • Cui H-L, Zhou P-J, Oren A, Liu S-J (2009) Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13:31–37

    Article  CAS  PubMed  Google Scholar 

  • Cui H-L, Gao X, Yang X, Xu X-W (2010) Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 14:493–499

    Article  CAS  PubMed  Google Scholar 

  • Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez C, González C (1972) Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517

    PubMed  PubMed Central  Google Scholar 

  • Henriet O, Fourmentin J, Delincé B, Mahillon J (2014) Exploring the diversity of extremely halophilic archaea in food-grade salts. Int J Food Microbiol 191:36–44

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Itoh T, Ohkuma M, Kogure K (2011) Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61:942–946

    Article  CAS  PubMed  Google Scholar 

  • Ivanov VM (2004) The 125th anniversary of the Griess reagent. J Anal Chem 59:1002–1005

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Ren M, Zhang L-L (2015) Natribaculum breve gen. nov., sp. nov. and Natribaculum longum sp. nov., halophilic archaea isolated from saline soil. Int J Syst Evol Microbiol 65:604–608

    Article  CAS  PubMed  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  CAS  PubMed  Google Scholar 

  • McDade JJ, Weaver RH (1959) Rapid methods for the detection of gelatin hydrolysis. J Bacteriol 77:60–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, Hashimoto T (2010) Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB′) gene. Int J Syst Evol Microbiol 60:2398–2408

    Article  PubMed  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2014a) Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18:825–834

    Article  PubMed  Google Scholar 

  • Oren A (2014b) Family Halobacteriaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, 4th edn. Springer, New York

    Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238

    Article  Google Scholar 

  • Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1979) Isolation of extreme halophiles from seawater. Appl Environ Microbiol 38:164–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Toshchakov SV, Kolganova TV, Kublanov IV (2015) Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol 6:942

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viver T, Cifuentes A, Díaz S, Rodríguez-Valdecantos G, González B, Antón J, Rosselló-Móra R (2015) Diversity of extremely halophilic cultivable prokaryotes in Mediterranean, Atlantic and Pacific solar salterns: Evidence that unexplored sites constitute sources of cultivable novelty. Syst Appl Microbiol 38:266–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31370054), the opening project of State key Laboratory of Microbial Resources (No. SKLMR-20150603, Institute of Microbiology, Chinese Academy of Sciences) and the 11th “Six Talents Peak” Project of Jiangsu Province (No. 2014-SWYY-021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng-Lin Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WM., Xu, JQ., Zhou, Y. et al. Halomarina salina sp. nov., isolated from a marine solar saltern. Antonie van Leeuwenhoek 109, 1121–1126 (2016). https://doi.org/10.1007/s10482-016-0714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0714-5

Keywords

Navigation