Skip to main content
Log in

A low power CMOS voltage reference generator with temperature and process compensation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A low power CMOS voltage reference with process compensation is presented in TSMC 0.18-μm standard CMOS technology. Detailed analysis of the process compensation technique is discussed. The circuit is simulated with Spectre. Simulation results show that, without any trimming procedure, the output voltage achieves a maximum deviation of 0.35 % across different process corners. The temperature coefficient of the proposed circuit is 12.7 ppm/°C in a temperature range from −40 to 85 °C and the line sensitivity is 0.036 mV/V with a supply voltage range from 1.2 to 2.5 V under typical condition. The maximum supply current is 390.4 nA at maximum supply voltage and −40 °C. The power supply rejection ratio is −68.3 dB at 100 Hz and 2.5 V without any filtering capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Doyle, J., Lee, Y. J., Kim, Y.-B., Wilsch, H., & Lombardi, F. (2004). A CMOS subbandgap reference circuit with 1-V power supply voltage. IEEE Journal of Solid-State Circuits, 39(1), 252–255.

    Article  Google Scholar 

  2. Sanborn, K., Ma, D., & Ivanov, V. (2007). A sub-1-V low-noise bandgap voltage reference. IEEE Journal of Solid-State Circuits, 42(11), 2466–2481.

    Article  Google Scholar 

  3. Ivanov, V., Brederlow, R., & Gerber, J. (2012). An ultra low power bandgap operational at supply from 0.75 V. IEEE Journal of Solid-State Circuits, 47(7), 1515–1523.

    Article  Google Scholar 

  4. Wu, J., Chen, C., Shen, H., Huang, C., & Liu, H. (2013). A high PSRR CMOS voltage reference with 1.2 V operation. Analog Integrated Circuits and Signal Processing, 77(1), 79–86.

    Article  Google Scholar 

  5. Giustolisi, G., Palumbo, G., Criscione, M., & Cutri, F. (2003). A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 38(1), 151–154.

    Article  Google Scholar 

  6. Ueno, K., Hirose, T., Asai, T., & Amemiya, Y. (2009). A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference Circuit consisting of subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 44(7), 2047–2054.

    Article  Google Scholar 

  7. De Vita, G., & Iannaccone, G. (2007). A sub-1-V, 10 ppm/°C, nanopower voltage reference generator. IEEE Journal of Solid-State Circuits, 42(7), 1536–1542.

    Article  Google Scholar 

  8. Zhou, Z., Zhu, P., Shi, Y., Wang, H., Ma, Y., et al. (2012). A CMOS voltage reference based on mutual compensation of Vtn and Vtp. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(6), 341–345.

    Article  MathSciNet  Google Scholar 

  9. Magnelli, L., Crupi, F., Corsonello, P., Pace, C., Iannaccone, G., & Crupi, F. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474.

    Article  Google Scholar 

  10. Sul, H., Jun, Y., & Kong, B. (2010). A temperature-stabilized voltage reference utilizing MOS body effect. In 2010 IEEE Asia Pacific conference on circuits and systems (pp. 792–795).

  11. Leung, K. N., & Mok, P. K. T. (2003). A CMOS voltage reference based on weighted ΔVGS for CMOS low-dropout linear regulators. IEEE Journal of Solid-State Circuits, 38(1), 146–150.

    Article  Google Scholar 

  12. De Vita, G., & Iannaccone, G. (2005). An ultra-low-power, temperature compensated voltage reference generator. In Proceedings of the IEEE 2005, custom integrated circuits conference (pp. 751–754).

  13. De Vita, G., Iannaccone, G., & Andreani, P. (2006). A 300 nW, 12 ppm/°C voltage reference in a digital 0.35-μm CMOS process. In 2006 Symposium on VLSI circuits, 2006. Digest of Technical Papers (pp. 81–82).

  14. Seok, M., Kim, G., Blaauw, D., & Sylvester, D. (2012). A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE Journal of Solid-State Circuits, 47(10), 2534–2545.

    Article  Google Scholar 

  15. Yan, W., Li, W., & Liu, R. (2009). Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient. Electronics Letters, 45(12), 627–629.

    Article  Google Scholar 

  16. Zhou, Z., Zhu, P., Shi, Y., Qu, X., Wang, H., et al. (2013). A resistorless CMOS voltage reference based on mutual compensation of VT and VTH. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(9), 586–682.

    Google Scholar 

  17. Razavi, B. (2000). Design of analog CMOS integrated circuits. New York: McGraw-Hill.

    Google Scholar 

  18. Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 876–884.

    Article  Google Scholar 

  19. Ma, H., & Zhou, F. (2009). A sub-1 V 115 nA 0.35 µm CMOS voltage reference for ultra low-power applications. In Proceedings of IEEE of the ASIC, ASICON ‘09. IEEE 8th international conference on ASIC (pp. 1074–1077).

Download references

Acknowledgments

This work was funded by the special funds for the development of Internet of things of Wuxi in China under project contracts No. 0414B011601130083PB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangbo Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Liu, J., Wang, Y. et al. A low power CMOS voltage reference generator with temperature and process compensation. Analog Integr Circ Sig Process 81, 313–324 (2014). https://doi.org/10.1007/s10470-014-0360-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0360-7

Keywords

Navigation