Skip to main content
Log in

A novel two stage cross coupled architecture for low voltage low power voltage reference generator

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Sensor network architectures have gained significant attention in acquiring data over widespread areas. To avoid wiring and power complexities, self-powered operation is desirable in these sensors. For this purpose, low voltage and low power characteristics of the internal electronic building blocks is of significant importance. Since sensor architectures usually require voltage reference circuitry, in this paper, a low voltage, low power bandgap reference circuit block is presented. Using a new two stage topology, the line sensitivity is reduced to a significantly low value of 0.28%/V over a wider power supply range of 0.2 V to 2 V. Due to the use of MOSFETs in the subthreshold region, low voltage and low power operation of about 41 pW at 0.2 V is obtained. Furthermore by introducing a novel cross coupled architecture, the temperature coefficient is enhanced considerably. An average temperature coefficient of 247 ppm/°C is obtained at different corners. The performance of the architecture is studied in a 0.18 µm process using post layout and Monte Carlo evaluations. The evaluation results show improvements in both line sensitivity and temperature coefficients compared with previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Razavi, B. (2017). Design of analog CMOS integrated circuits (5th ed.). New York: McGraw-Hill Education.

    Google Scholar 

  2. Wang, A., & Chandrakasan, A. (2005). A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE Journal of Solid-State Circuits, 40(1), 310–319.

    Article  Google Scholar 

  3. Luo, S.-C., & Chiou, L.-Y. (2010). A sub-200-mV voltage-scalable SRAM with tolerance of access failure by self-activated bitline sensing. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(6), 440–445.

    Article  Google Scholar 

  4. Modava, M., et al. (2017). Design of efficient power amplifier for low power transmitters. Analog Integrated Circuits and Signal Processing, 90(3), 563–571.

    Article  Google Scholar 

  5. Azhari, S. J., & Nickhah, G. (2017). A novel ultra-low-power, low-voltage, ultra-high output resistance and uniquely high bandwidth femto-ampere current mirror. Circuits, Systems, and Signal Processing, 36(9), 3527–3548.

    Article  MATH  Google Scholar 

  6. Mattia, O. E., Klimach, H., & Bampi, S. (2015). Sub-1 V supply 5 nW 11 ppm/° C resistorless sub-bandgap voltage reference. Analog Integrated Circuits and Signal Processing, 85(1), 17–25.

    Article  Google Scholar 

  7. Lo, T.-Y., Hung, C.-C., & Ismail, M. (2010). CMOS voltage reference based on threshold voltage and thermal voltage. Analog Integrated Circuits and Signal Processing, 62(1), 9.

    Article  Google Scholar 

  8. Sarafi, S., Aain, A. K. B., & Abbaszadeh, J. (2016). Low-voltage CMOS Switch for high-speed rail-to-rail sampling. Circuits, Systems, and Signal Processing, 35(3), 771–790.

    Article  MathSciNet  Google Scholar 

  9. Ivanov, V., Brederlow, R., & Gerber, J. (2012). An ultra low power bandgap operational at supply from 0.75 V. IEEE Journal of Solid-State Circuits, 47(7), 1515–1523.

    Article  Google Scholar 

  10. Filanovsky, I., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 876–884.

    Article  Google Scholar 

  11. Yang, Y., et al. (2011). All-CMOS subbandgap reference circuit operating at low supply voltage. In 2011 IEEE international symposium on circuits and systems (ISCAS). 2011. IEEE.

  12. Magnelli, L., et al. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474.

    Article  Google Scholar 

  13. Chouhan, S. S., & Halonen, K. (2014). Design and implementation of all MOS micro-power voltage reference circuit. Analog Integrated Circuits and Signal Processing, 80(3), 399–406.

    Article  Google Scholar 

  14. Wang, Y., et al. (2015). A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(7), 621–625.

    Article  Google Scholar 

  15. Zhu, Z., Hu, J., & Wang, Y. (2016). A 0.45 V, nano-watt 0.033% line sensitivity MOSFET-only sub-threshold voltage reference with no amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(9), 1370–1380.

    Article  MathSciNet  Google Scholar 

  16. Seok, M., et al. (2012). A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE Journal of Solid-State Circuits, 47(10), 2534–2545.

    Article  Google Scholar 

  17. De Vita, G., & Iannaccone, G. (2007). A sub-1-V, 10 ppm/°C, nanopower voltage reference generator. IEEE Journal of Solid-State Circuits, 42(7), 1536–1542.

    Article  Google Scholar 

  18. Albano, D., et al. (2015). A sub-kT/q voltage reference operating at 150 mV. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(8), 1547–1551.

    Article  Google Scholar 

  19. Bucher, M., et al. (1998). The EPFL-EKV MOSFET model equations for simulation. EPFL Lausanne Switzerland, Technical Report, 1998.

  20. Albano, D., et al. (2014). A picopower temperature-compensated, subthreshold CMOS voltage reference. International Journal of Circuit Theory and Applications, 42(12), 1306–1318.

    Article  Google Scholar 

  21. Yang, B.-D. (2014). 250-mV supply subthreshold CMOS voltage reference using a low-voltage comparator and a charge-pump circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(11), 850–854.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Habibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi Dastgerdi, M., Habibi, M. & Dolatshahi, M. A novel two stage cross coupled architecture for low voltage low power voltage reference generator. Analog Integr Circ Sig Process 99, 393–402 (2019). https://doi.org/10.1007/s10470-018-1379-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1379-y

Keywords

Navigation