Skip to main content
Log in

Reanalyzing the basic bandgap reference voltage circuit considering thermal dependence of bandgap energy

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The basic bandgap reference voltage generator, BGR, is thoroughly analyzed and relations are reconstructed considering dependency of bandgap energy, Eg, to absolute temperature. The previous works all consider Eg as a constant, independent of temperature variations. However, Eg varies around 25 meV when the temperature is increased from 2 to 92 °C. In this paper the dependence of Eg to absolute temperature, based on HSPICE mosfet models in HSPICE MOSFET Models Manual (Version X-2005.09, 2005), is approximated by a third-order polynomial using Lagrangian interpolating method within the temperature range of 2–92 °C. Accurate analysis on the simplified polynomial reveals that the TC of VBE must be corrected to −1.72 mV/°K at 27 °C which has been formerly reported about −1.5 mV/°K in Razavi (Design of analog CMOS integrated circuits, 2001) and Colombo et al. (Impact of noise on trim circuits for bandgap voltage references, 2007), −2 mV/°K in Gray et al. (Analysis and design of analog integrated circuits, 2001), Leung and Mok (A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device, 2002), Banba et al. (A CMOS bandgap reference circuit with sub-1-V operation, 1999), and −2.2 mV/°K in Jones and Martin (Analog integrated circuit design, 1997), Tham and Nagaraj (A low supply voltage high PSRR voltage reference in CMOS process, 1995). Another important conclusion is that the typical weighting coefficient of TC+ and TC− terms is modified to about 19.84 at 27 °C temperature from otherwise 16.76, when Eg is considered constant, and also 17.2, in widely read literatures, (Razavi in Design of analog CMOS integrated circuits, 2001). Neglecting the temperature dependence of Eg might introduce a relative error of about 20.5 % in TC of VBE. Also, resistance and transistor size ratios, which denote the weighting coefficient of TC+ term, might be encountered to utmost 20.3 % error when the temperature dependence of Eg is ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., et al. (1999). A CMOS bandgap reference circuit with sub-1-V operation. IEEE Journal of Solid-State Circuits, 34(5), 670–674.

    Article  Google Scholar 

  2. Colombo, D., Wirth, G., Bampi, S., & Fayomi, C. (2007) Impact of noise on trim circuits for bandgap voltage references. 14th IEEE conference on electronics circuits and systems (ICECS) (pp. 775–778).

  3. Ge, G., Zhang, C., Hoogzaad, G., & Makinwa, K. A. A. (2011). A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15 % from −40 to 125 °C. IEEE Journal of Solid-State Circuits, 46(11), 2693–2701.

    Article  Google Scholar 

  4. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits, Chapter 4 (4th ed., pp. 317–328). New York: Wiley.

    Google Scholar 

  5. HSPICE MOSFET Models Manual. (2005). Version X-2005.09 copyright by synopsis, September 2005, p. 101.

  6. Jin, L., Xing, H., Chen, D., & Geiger, R. (2006). A self-calibrated bandgap voltage reference with 0.5 ppm/oC temperature coeffcient. IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2853–2856).

  7. Jones, D., & Martin, K. (1997). Analog integrated circuit design, Chapter 8 (pp. 353–359). New York: Wiley.

    Google Scholar 

  8. Kazeminia, S., Hadidi, K., Khoei, A., & Azarmanesh, M.-N. (2011) Effect of bandgap energy temperature dependence on thermal coefficient of bandgap reference voltage. 20th European Conference on Circuit Theory and Design (ECCTD) (pp. 458–461).

  9. Leung, K., & Mok, P. K. T. (2002). A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE Journal of Solid-State Circuits, 37(4), 526–530.

    Article  Google Scholar 

  10. Li, J.-H., Zhang, X.-B., & Yu, M.-Y. (2011). A 1.2-V piecewise curvature-corrected bandgap reference in 0.5 μm CMOS process. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(6), 1118–1122.

    Article  Google Scholar 

  11. Malcovati, P., Maloberti, F., Fiocchi, C., & Pruzzi, M. (2001). Curvature-compensated BiCMOS bandgap with 1-V supply voltage. IEEE Journal of Solid-State Circuits, 36(7), 1076–1081.

    Article  Google Scholar 

  12. Ming, X., Ma, Y.-Q., Zhou, Z.-K., & Zhang, B. (2010). A high-precision compensated CMOS bandgap voltage reference without resistors. IEEE Transactions on Circuits and Systems-II: Express Briefs, 57(10), 767–771.

    Article  Google Scholar 

  13. Perry, R. T., Lewis, S. H., Brokaw, A. P., & Viswanathan, T. R. (2007). A 1.4 V supply CMOS fractional bandgap reference. IEEE Journal of Solid-State Circuits, 42(10), 2180–2185.

    Article  Google Scholar 

  14. Razavi, B. (2001). Design of analog CMOS integrated circuits, Chapter 11 (pp. 377–389). Boston, MA: McGraw-Hill.

    Google Scholar 

  15. Sze, S. M. (1985). Semiconductor devices physics and technology (pp. 12–14). New York: Wiley.

    Google Scholar 

  16. Tham, K.-M., & Nagaraj, K. (1995). A low supply voltage high PSRR voltage reference in CMOS process. IEEE Journal of Solid-State Circuits, 30(5), 586–590.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarang Kazeminia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazeminia, S., Hadidi, K. & Khoei, A. Reanalyzing the basic bandgap reference voltage circuit considering thermal dependence of bandgap energy. Analog Integr Circ Sig Process 79, 141–147 (2014). https://doi.org/10.1007/s10470-013-0248-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0248-y

Keywords

Navigation