Skip to main content
Log in

On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers

  • Special Issue: Autopollen
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Hirst-type volumetric spore traps are used across the globe and are the current standard instrument for monitoring pollen. While they suffer from various issues related to sampling, measurement, and human error, they are, nevertheless, relatively cost-efficient and robust instruments that have been in use for decades. They are also the only reference against which newer instruments can be directly evaluated and it is thus important to understand and quantify all errors to make fair comparisons. Here, we investigate the variability across three Hirst-type traps run in parallel for three months during the main pollen season in Payerne, Switzerland. A variety of temporal resolutions is studied. Overall, daily average values show median relative differences of 16% for total pollen (inter-quartile range (IQR) = 8–32%) and between 23 and 67% for the top three taxa considered. The values are identical for total pollen when only concentrations > 10 pollen grains/m3 are considered, but decrease notably for the individual taxa investigated, with median relative differences ranging 14–30%. At the 2-hourly resolution, there is considerably more variability between the three samplers, with median relative differences of 42% for total pollen (IQR = 20–88%) and 62–120% for the top three taxa, respectively. Again, when the lowest concentrations are not included, these differences decrease somewhat to 40% for total pollen (IQR = 19–78%) and 41–56% for the top three taxa, respectively. Observations of low concentrations below 10 pollen grains/m3 therefore have a large impact on the measurement uncertainty: for daily average total pollen concentrations there are differences of over 100% between the three samplers, and for individual taxa differences reach up to 200%, the maximum value possible in terms of pairwise comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berggren, B., Nilsson, S., & Boëthius, G. (1995). Diurnal variation of airborne birch pollen at some sites in Sweden. Grana, 34, 251–259.

    Article  Google Scholar 

  • Beug, H.-J. (2004). Leitfaden der Pollenbestimmung fur Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil.

    Google Scholar 

  • Borycka, K., & Kasprzyk, I. (2018). Hourly pattern of allergenic alder and birch pollen concentrations in the air: Spatial differentiation and the effect of meteorological conditions. Atmospheric Environment, 182, 179–192.

    Article  CAS  Google Scholar 

  • Burbach, G. J., Heinzerling, L. M., Edenharter, G., Bachert, C., Bindslev-Jensen, C., Bonini, S., Bousquet, J., Bousquet-Rouanet, L., Bousquet, P. J., Bresciani, M., Bruno, A., Canonica, G. W., Darsow, U., Demoly, P., Durham, S., Fokkens, W. J., Giavi, S., Gjomarkaj, M., Gramiccioni, C., … Zuberbier, T. (2009). GA2LEN skin test study II: Clinical relevance of inhalant allergen sensitizations in Europe. Allergy, 64, 1507–1515.

    Article  CAS  Google Scholar 

  • Buters, J. T. M., Thibaudon, M., Smith, M., Kennedy, R., Rantio-Lehtimäki, A., Albertini, R., Reese, G., Weber, B., Galán, C., Brandao, R., Antunes, C. M., Jäger, S., Berger, U., Celenk, S., Grewling, Ł, Jackowiak, B., Sauliene, I., Weichenmeier, I., Pusch, G., … Cecchi, L. (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmospheric Environment, 55, 496–505.

    Article  CAS  Google Scholar 

  • Buters, J. T. M., Antunes, C., Galveias, A., Bergmann, K. C., Thibaudon, M., Galán, C., Schmidt-Weber, C., & Oteros, J. (2018). Pollen and spore monitoring in the world. Clinical Translational Allergy. https://doi.org/10.1186/s13601-018-0197-8

    Article  Google Scholar 

  • Cariñanos, P., Emberlin, J., Galán, C., & Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a hirst type volumetric trap. Aerobiologia, 16, 339.

    Article  Google Scholar 

  • CEN/EN 16868:2019 (2019). Ambient air - Sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy networks – Volumetric Hirst method. European Standard, European Committee for Standardisation, Brussels, Belgium, 38p.

  • Clot, B. (2001). Airborne birch pollen in Neuchatel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17, 25–29.

    Article  Google Scholar 

  • Comtois, P., Alcazar, P., & Néron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28.

    Article  Google Scholar 

  • Cotos-Yáñez, T. R., Rodríguez-Rajo, F. J., Pérez-González, A., Aira, M. J., & Jato, V. (2013). Quality control in aerobiology: Comparison different slide reading methods. Aerobiologia, 29, 1–11.

    Article  Google Scholar 

  • Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., & Clot, B. (2016). All-optical automatic pollen identification: Towards an operational system. Atmospheric Environment, 140, 202–212.

    Article  CAS  Google Scholar 

  • Cunha, M., Ribeiro, H., & Abreu, I. (2016). Pollen-based predictive modelling of wine production: Application to an arid region. European Journal of Agronomy, 73, 42–54.

    Article  Google Scholar 

  • de Weger, L. A., Bergmann, K. C., Rantio-Lehtimäki, A., Dahl, A., Buters, J., Déchamp, C., Belmonte, J., Thibaudon, M., Cecchi, L., Besancenot, J. P., Galán, C., & Waisel, Y. (2013). Impact of pollen. In M. Sofiev & K. C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 161–215). Springer Science+Business Media.

    Chapter  Google Scholar 

  • Ekebom, A., Nilsson, S., Saar, M., & Van Hage-Hamsten, M. (1997). A comparative study of airborne pollen concentrations of three allergenic types in Tartu (Estonia), Roma/Gotland and Stockholm (Sweden) 1990–1996. Grana, 36, 366–372.

    Article  Google Scholar 

  • Fisher, R. A. (1919). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.

    Article  Google Scholar 

  • Frenz, D. A. (1999). Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Annals of Allergy, Asthma and Immunology, 83, 341–349.

    Article  CAS  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot, B., Brandao, R., & EAS QC Working Group. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.

    Article  Google Scholar 

  • Gottardini, E., & Cristofolini, F. (1997). Spring airborne pollen data in two sites in Trentino (Northern Italy): A comparison with meteorological data. Aerobiologia. https://doi.org/10.1007/BF02694508

    Article  Google Scholar 

  • Gottardini, E., Cristofori, A., Vannini, A., & Ferretti, M. (2009). Sampling bias and sampling errors in pollen counting in aerobiological monitoring in Italy. Journal of Environmental Monitoring, 11, 751–755.

    Article  CAS  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Irdi, G. A., Jones, J. R., & White, C. M. (2002). Pollen and fungal spore sampling and analysis. Statistical evaluations. Grana, 41(1), 44–47.

    Article  Google Scholar 

  • Käpylä, M., & Penttinen, A. (1981). An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20, 131–141.

    Article  Google Scholar 

  • Karrer, G., Skjøth, C. A., Šikoparija, B., Smith, M., Berger, U., & Essl, F. (2015). Ragweed (Ambrosia) pollen source inventory for Austria. Science of the Total Environment, 523, 120–128.

    Article  CAS  Google Scholar 

  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30, 81–93.

    Article  Google Scholar 

  • Konietschke, F., Placzek, M., Schaarschmidt, F., & Hothorn, L. A. (2015). nparcomp: An R software package for nonparametric multiple comparisons and simultaneous confidence intervals. Journal of Statistical Software, 64, 1–17.

    Article  Google Scholar 

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.

    Article  Google Scholar 

  • Mandrioli, P., Comtois, P., & Levizzani, V. (1998). Methods in Aerobiology (p. 262p). Pitagora Editrice.

    Google Scholar 

  • Meiffren, I. (1988). Airborne pollen of Toulouse, southern France. Comparison with Bordeaux and Montpellier. Grana, 27, 183–201.

    Article  Google Scholar 

  • Mitakakis, T. Z., & McGee, P. A. (2000). Reliability of measures of spores of Alternaria and pollen concentrations in air over two towns in rural Australia. Grana, 39, 141–145.

    Article  Google Scholar 

  • Oteros, J., Galán, C., Alcazar, P., & Dominguez-Vilches, E. (2013). Quality control in bio-monitoring networks, Spanish Aerobiology Network. Science of the Total Environment, 443, 559–565.

    Article  CAS  Google Scholar 

  • Oteros, J., Orlandi, F., García-Mozo, H., Aguilera, F., Ben, D. A., Bonofiglio, T., Abichou, M., Ruiz-Valenzuela, L., Trigo, M. M., Díaz de la Guardia, C., Domínguez-Vilches, E., Msallem, M., Marco Fornaciari, M., & Galán, C. (2014). Better prediction of Mediterranean olive production using pollen-based models. Agronomy and Sustainable Development, 34, 685–694.

    CAS  Google Scholar 

  • Oteros, J., Buters, J., Laven, G., Röseler, S., Wachter, R., Schmidt-Weber, C., & Hofmann, F. (2017). Errors in determining the flow rate of Hirst-type pollen traps. Aerobiologia, 33, 201–210.

    Article  Google Scholar 

  • Pawankar, R., Canonica, G.W., Holgate, S.T., Lockey, R.F., & Blaiss, M. (2013). World Allergy Organisation (WAO) White Book on Allergy: Update 2013. Milwaukee World Allergy Organisation.

  • Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242.

    Article  Google Scholar 

  • Pedersen, B. V., & Moseholm, L. (1993). Precision of the daily pollen count. Identifying sources of variation using variance component models. Aerobiologia, 9, 15–26.

    Article  Google Scholar 

  • Prtenjak, M. T., Srnec, L., Peternel, R., Madzarevic, V., Hrga, I., & Stjepanovic. . (2012). Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia. International Journal of Biometeorology, 56, 1145–1158.

    Article  Google Scholar 

  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

  • Rizzi, L., Pizzulin, M., & Larese, F. (1992). Comparison between the allergenic airborne pollen in Trieste and at Lozzo di Cadore (Italy) in 1989. Aerobiologia, 8, 385–391.

    Article  Google Scholar 

  • Rojo, J., Oteros, J., Perez-Badia, R., Cervigon, P., Ferencova, Z., Gutierrez-Bustillo, M., Bergmann, K.-C., Oliver, G., Thibaudon, M., Albertini, R., Rodriguez-De la Cruz, D., Sanchez-Reyes, E., Sanchez-Sanchez, J., Pessi Jukka Reiniharju, A.-M., Saarto, A., Calderon, M.C., Guerrero, C., Berra, D., Bonini, M., Chiodini, E., Fernandez-Gonzalez, D., Garcia, J., Trigo, M.M., Myszkowska, D., Fernandez-Rodriguez, S., Tormo-Molina, R., Damialis, A., Haering, F., Traidl-Hoffmann, C., Severova, E., Caeiro, E., Ribeiro, H., Magyar, D., Makra, L., Udvardy, O., Alcazar, P., Galán, C., Borycka, K., Kasprzyk, I., Newbigin, E., Adams-Groom, B., Apangu, G.P., Frisk, C.A., Skjoth, C., Radišic, P., Šikoparija, B., Celenk, S. , Schmidt-Weber, C., & Buters, J. (2019). Near-ground effect of height on pollen exposure. Environment Research, 174, 160-169.

  • Sarda Estève, R., Baisnée, D., Guinot, B., Petit, J.-E., Sodeau, J., O’Connor, D., Besancenot, J.-P., Thibaudon, M., & Gros, V. (2018). Temporal variability and geographical origins of airborne pollen grains concentrations from 2015 to 2018 at Saclay, France. Remote Sensing, 10, 1932.

    Article  Google Scholar 

  • Sauliene, I., Sukiene, L., Daunys, G., Valiulis, G., Vaitkevicius, L., Matavulj, P., Brdar, S., Panic, M., Sikoparija, B., Clot, B., Crouzy, B., & Sofiev, M. (2019). Automatic pollen recognition with the rapid-E particle counter: The first-level procedure, experience and next steps. Atmospheric Measurement Techniques, 12, 3435–3452.

    Article  CAS  Google Scholar 

  • Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Konzelmann, T., Lieberherr, G., Tummon, F., & Vasilatou, K. (2020). Real-time pollen monitoring using digital holography. Atmospheric Measurement Techniques, 13, 1–12.

    Article  CAS  Google Scholar 

  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 3, 430–439.

    Article  Google Scholar 

  • Sikoparija, B., Smith, M., Skjøth, C. A., Radisic, P., Milkovska, S., & Brandt, J. (2009). The Pannonian plain as a source of Ambrosia pollen in the Balkans. International Journal of Biometeorology, 53, 263–272.

    Article  CAS  Google Scholar 

  • Sikoparija, B., Pejak-Sikoparija, T., Radisic, P., Smith, M., & Galán Soldevilla, C. (2011). The effect of changes to the method of estimating the pollen count from aerobiological samples. Journal of Environmental Monitoring, 13, 384–390.

    Article  CAS  Google Scholar 

  • Sikoparija, B., Galán, C., Smith, M., & EAS QC Working Group. (2017). Pollen-monitoring: Between analyst proficiency testing. Aerobiologia, 33, 191–199.

    Article  Google Scholar 

  • Smith, M., Oteros, J., Schmidt-Weber, C., & Buters, J. T. M. (2019). An abbreviated method for the quality control of pollen counters. Grana, 58, 185–190.

    Article  Google Scholar 

  • Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15, 72–101.

    Article  Google Scholar 

  • Tormo Molina, R., Munoz Rodriguez, A., & Silva Palacios, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst spore traps. Aerobiologia, 12, 161–166.

    Article  Google Scholar 

  • Tormo Molina, R., Maya Manzano, J. M., Fernandez Rodriguez, S., Gonzalo Garijo, A., & Silva Palacios, I. (2013). Influence of environmental factors on measurements with Hirst spore traps. Grana, 52, 59–70.

    Article  Google Scholar 

  • Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99–114.

    Article  CAS  Google Scholar 

  • Zhang, Y., Bielory, L., Mi, Z., Robock, A., & Georgopoulos, P. (2015). Allergenic pollen season variations in the past two decades under changing climate in the United States. Global Change Biology, 21, 1582–1589.

    Article  Google Scholar 

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., Brighetti, M. A., Damialis, A., Detandt, M., Galán, C., Gehrig, R., Grewling, L., Gutierrez Bustillo, A. M., Hallsdottir, M., Kckhans-Bieda, M.-C., De Linares, C., Myszkowska, D., Paldy, A., Sanchez, A., … Menzel, A. (2012). Changes to airborne pollen counts across Europe. PLoS ONE. https://doi.org/10.1371/journal.pone.0034076

    Article  Google Scholar 

  • Ziska, L. H., Makra, L., Harry, S. K., Bruffaerts, N., Hendrickx, M., Coates, F., Saarto, A., Thibaudon, M., Oliver, G., Damialis, A., Charalampopoulos, A., Vokou, D., Heiđmarsson, S., Guđjohnsen, E., Bonini, M., Oh, J., Sullivan, K., Ford, L., Brooks, G. D., … Crimmins, A. R. (2019). Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. The Lancet Planetary Health, 3(3), e124–e131.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to the EUMETNET AutoPollen Programme, which is developing a prototype automatic pollen monitoring network in Europe covering all aspects of the information chain from measurements through to communicating information to the public.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Tummon.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamov, S., Lemonis, N., Clot, B. et al. On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers. Aerobiologia (2021). https://doi.org/10.1007/s10453-021-09724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10453-021-09724-5

Keywords

Navigation