Skip to main content
Log in

Reduced Order Modeling for Real-Time Stent Deformation Simulations of Transcatheter Aortic Valve Prostheses

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahrens, J., B. Geveci, and C. Law. Paraview: an end-user tool for large data visualization. Vis. Handb. 717:500381, 2005.

    Google Scholar 

  2. Alnæs, M., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells. The Fenics project version 15. Arch. Numer. Softw. 3:100, 2015.

    Google Scholar 

  3. Anam, S., B. Kovarovic, R. Ghosh, M. Bianchi, A. Hamdan, R. Haj-Ali, and D. Bluestein. Assessment of paravalvular leak severity and thrombogenic potential in transcatheter bicuspid aortic valve replacements using patient-specific computational modeling. J. Cardiovasc. Transl. Res. 15:834–844, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Auricchio, F., M. Conti, S. Morganti, and A. Reali. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Eng. 17:1347–1357, 2013.

    Article  Google Scholar 

  5. Auricchio, F., R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146:281–312, 1997.

    Article  Google Scholar 

  6. Bailoor, S., J.-H. Seo, L. Dasi, S. Schena, and R. Mittal. A computational study of the hemodynamics of bioprosthetic aortic valves with reduced leaflet motion. J. Biomech. 120:110350, 2021.

    Article  PubMed  Google Scholar 

  7. Balachandran, K., P. Sucosky, and A. P. Yoganathan. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int. J. Inflamm. 2011. https://doi.org/10.4061/2011/263870.

    Article  Google Scholar 

  8. Ballarin, F., E. Faggiano, A. Manzoni, A. Quarteroni, G. Rozza, S. Ippolito, C. Antona, and R. Scrofani. Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts. Biomech. Model. Mechanobiol. 16:1373–1399, 2017.

    Article  PubMed  Google Scholar 

  9. Barati, S., N. Fatouraee, M. Nabaei, F. Berti, L. Petrini, F. Migliavacca, and J. F. R. Mata. A computational optimization study of a self-expandable transcatheter aortic valve. Comput. Biol. Med. 139:104942, 2021.

    Article  PubMed  Google Scholar 

  10. Barboteu, M., P. Alart, and M. Vidrascu. A domain decomposition approach strategy for nonclassical frictional multi-contact problems. Comput. Methods Appl. Mech. Eng. 190:37–38, 2001.

    Article  Google Scholar 

  11. Barrault, M., Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. 339:667–672, 2004.

    Article  Google Scholar 

  12. Bertagna, L., and A. Veneziani. A model reduction approach for the variational estimation of vascular compliance by solving an inverse fluid-structure interaction problem. Inverse Prob.30:055006, 2014.

    Article  Google Scholar 

  13. Bianchi, M., R. P. Ghosh, G. Marom, M. J. Slepian, and D. Bluestein. Simulation of transcatheter aortic valve replacement in patient-specific aortic roots: effect of crimping and positioning on device performance. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 282–285, IEEE2015.

  14. Bianchi, M., G. Marom, R. P. Ghosh, O. M. Rotman, P. Parikh, L. Gruberg, and D. Bluestein. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model. Mechanobiol. 18:435–451, 2019.

    Article  PubMed  Google Scholar 

  15. Brown, J., J. Lee, M. Smith, D. Wells, A. Barrett, C. Puelz, J. Vavalle, and B. Griffith. Patient-specific immersed finite element-difference model of transcatheter aortic valve replacement. Ann. Biomed. Eng. 51:103–116, 2023.

    Article  PubMed  Google Scholar 

  16. Capelli, C., G. M. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, F. Migliavacca, A. M. Taylor, and S. Schievano. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50:183–192, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Carbonaro, D., D. Gallo, U. Morbiducci, A. Audenino, and C. Chiastra. In silico biomechanical design of the metal frame of transcatheter aortic valves: multi-objective shape and cross-sectional size optimization. Struct. Multidiscip. Optim. 64:1825–1842, 2021.

    Article  Google Scholar 

  18. Carbonaro, D., S. Zambon, A. Corti, D. Gallo, U. Morbiducci, A. Audenino, and C. Chiastra. Impact of nickel-titanium super-elastic material properties on the mechanical performance of self-expandable transcatheter aortic valves. J. Mech. Behav. Biomed. Mater.138:105623, 2023.

    Article  CAS  PubMed  Google Scholar 

  19. Chakravarty, T., L. Søndergaard, J. Friedman, O. De Backer, D. Berman, K. F. Kofoed, H. Jilaihawi, T. Shiota, Y. Abramowitz, T. H. Jørgensen, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet. 389:2383–2392, 2017.

    Article  PubMed  Google Scholar 

  20. Chatterjee, A. An introduction to the proper orthogonal decomposition. Curr. Sci. 78:808–817, 2000.

    Google Scholar 

  21. Chaturantabut, S., and D. Sorensen. Discrete empirical interpolation for nonlinear model reduction. In: Proceedings of the 48th IEEE Conference on Decision and Control (CDC), pp. 4316–4321, 2009.

  22. Cueto, E., and F. Chinesta. Real time simulations for computational surgery: a review. Adv. Model. Simul. Eng. Sci. 1:1–18, 2014.

    Article  Google Scholar 

  23. Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Matin, T. Pham, Q. Wang, V. Raghav, and A. P. Yoganathan. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.

    Article  PubMed  Google Scholar 

  24. Daubert, M. A., N. J. Weissman, R. T. Hahn, P. Pibarot, R. Parvataneni, M. J. Mack, L. G. Svensson, D. Gopal, S. Kapadia, R. J. Siegel, et al. Long-term valve performance of TAVR and SAVR: a report from the partner I trial. Cardiovasc. Imaging. 10:15–25, 2017.

    Google Scholar 

  25. Dowling, C., R. Gooley, L. McCormick, S. Brecker, S. Firoozi, V. Bapat, S. Kodali, O. Khalique, J. Brouwer, and M. Swaans. Patient-specific computer simulation to optimize transcatheter heart valve sizing and positioning in bicuspid aortic valve. Struct. Heart. 5:621–630, 2021.

    Article  Google Scholar 

  26. Esmailie, F., A. Razavi, B. Yeats, S. K. Sivakumar, H. Chen, M. Samaee, I. Shah, A. Veneziani, P. Yadav, V. Thourani, and L. P. Dasi. Biomechanics of transcatheter aortic valve replacement complications and computational predictive modeling. Struct. Heart.6:100032, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Finotello, A., S. Morganti, and F. Auricchio. Finite element analysis of TAVI: impact of native aortic root computational modeling strategies on simulation outcomes. Med. Eng. Phys. 47:2–12, 2017.

    Article  PubMed  Google Scholar 

  28. Fukui, M., V. Bapat, S. Garcia, M. Dworak, G. Hashimoto, H. Sato, M. Gossl, M. Enriquez-Sarano, J. Lesser, J. Cavalcante, and P. Sorajja. Deformation of transcatheter aortic valve prosthesis: Implications for hypoattenuating leaflet thickening and clinical outcomes. Circulation. 146:480–493, 2022.

    Article  CAS  PubMed  Google Scholar 

  29. Gessat, M., R. Hopf, T. Pollok, C. Russ, T. Frauenfelder, S. Sundermann, S. Hirsch, E. Mazza, G. Szekely, and V. Falk. Image-based mechanical analysis of stent deformation: concept and exemplary implementation for aortic valve stents. IEEE Trans. Biomed. Eng. 61:4–15, 2013.

    Article  Google Scholar 

  30. Gunning, P. S., T. J. Vaughan, and L. M. McNamara. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann. Biomed. Eng. 42:1989–2001, 2014.

    Article  PubMed  Google Scholar 

  31. Hall, G., and E. Kasper. Comparison of element technologies for modeling stent expansion. J. Biomech. Eng. 128:751–756, 2006.

    Article  PubMed  Google Scholar 

  32. Helbock, R., S. Anam, B. Kovarovic, M. Slepia, A. Hamdan, R. Haj-Ali, and D. Bluestein. Designing a novel asymmetric transcatheter aortic valve for stenotic bicuspid aortic valves using patient-specific computational modeling. Ann. Biomed. Eng. 51:58–70, 2022.

    Article  PubMed  Google Scholar 

  33. Hesthaven, J. S., G. Rozza, B. Stamm, et al. Certified Reduced Basis Methods for Parameterized Partial Differential Equations, Vol. 590, Berlin: Springer, 2016.

    Book  Google Scholar 

  34. Heywood, J. G., R. Rannacher, and S. Turek. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids. 22:325–352, 1996.

    Article  Google Scholar 

  35. Hsu, M.-C., D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. Hughes. Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54:1055–1071, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kandail, H., S. Trivedi, A. Shaikh, T. Bajwa, D. O’Hair, A. Jahangir, and J. LaDisa. Impact of annular and supra-annular CoreValve deployment locations on aortic and coronary artery hemodynamics. J. Mech. Behav. Biomed. Mater. 86:131–142, 2018.

    Article  PubMed  Google Scholar 

  37. Kodali, S. K., M. R. Williams, C. R. Smith, L. G. Svensson, J. G. Webb, R. R. Makkar, G. P. Fontana, T. M. Dewey, V. H. Thourani, A. D. Pichard, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 366:1686–1695, 2012.

    Article  CAS  PubMed  Google Scholar 

  38. Kovarovic, B., R. Helbock, K. Baylous, O. Rotman, M. Slepian, and D. Bluestein. Visions of TAVR future: development and optimization of a second generation novel polymeric TAVR. J. Biomech. Eng.144:061008, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lavon, K., G. Marom, M. Bianchi, R. Halevi, A. Hamdan, A. Morany, E. Raanani, D. Bluestein, and R. Haj-Ali. Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: deployments and paravalvular leakage. Med. Biol. Eng. Comput. 57:2129–2143, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Logg, A., K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84, Berlin: Springer, 2012.

    Book  Google Scholar 

  41. Luraghi, G., F. Migliavacca, A. Garcia-Gonzalez, C. Chiastra, A. Rossi, D. Cao, G. Stefanini, and J. F. R. Matas. On the modeling of patient-specific transcatheter aortic valve replacement: a fluid-structure interaction approach. Cardiovasc. Eng. Technol. 10:437–455, 2019.

    Article  PubMed  Google Scholar 

  42. Luraghi, G., J. F. R. Matas, and F. Migliavacca. In silico approaches for transcatheter aortic valve replacement inspection. Expert Rev. Cardiovasc. Therapy. 19:61–70, 2020.

    Article  Google Scholar 

  43. Mao, W., Q. Wang, S. Kodali, and W. Sun. Numerical parametric study of paravalvular leak following a transcatheter aortic valve deployment into a patient-specific aortic root. J. Biomech. Eng.140:101007, 2018.

    Article  Google Scholar 

  44. Midha, P., V. Raghav, J. Condado, I. Okafor, S. Lerakis, V. Thourani, V. Babaliaros, and A. Yoganathan. Valve type, size, and deployment location affect hemodynamics in an in vitro valve-in-valve model. Cardiovasc. Interv. 9:1618–1628, 2016.

    Google Scholar 

  45. Mmg-Open-Source-Consortium. https://github.com/MmgTools/mmg.

  46. Morganti, S., N. Brambilla, A. Petronio, A. Reali, F. Bedogni, and F. Auricchio. Prediction of patient-specific post-operative outcomes of TAVI procedure: the impact of the positioning strategy on valve performance. J. Biomech. 49:2513–2519, 2016.

    Article  CAS  PubMed  Google Scholar 

  47. Mummert, J., E. Sirois, and W. Sun. Quantification of biomechanical interaction of transcatheter aortic valve stent deployed in porcine and ovine hearts. Ann. Biomed. Eng. 41:577–586, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Padala, M., E. L. Sarin, P. Willis, V. Babaliaros, P. Block, R. A. Guyton, and V. H. Thourani. An engineering review of transcatheter aortic valve technologies. Cardiovasc. Eng. Technol. 1:77–87, 2010.

    Article  Google Scholar 

  49. Pfaller, M. R., M. C. Varona, J. Lang, C. Bertoglio, and W. A. Wall. Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations. Int. J. Numer. Methods Biomed. Eng.36:e3320, 2020.

    Article  CAS  Google Scholar 

  50. Quarteroni, A., R. Sacco, and F. Saleri. Numerical Mathematics, Vol. 37, Berlin: Springer, 2010.

    Google Scholar 

  51. Ribeiro, H. B., L. Nombela-Franco, M. Urena, M. Mok, S. Pasian, D. Doyle, R. DeLarochellière, M. Côté, L. Laflamme, H. DeLarochellière, et al. Coronary obstruction following transcatheter aortic valve implantation: a systematic review. Cardiovasc. Interv. 6:452–461, 2013.

    Google Scholar 

  52. Schneider, T., Y. Hu, X. Gao, J. Dumas, D. Zorin, and D. Panozzo. A large-scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with the finite element method. ACM Trans. Graph. 41:1–14, 2022.

    Article  Google Scholar 

  53. Tzamtzis, S., J. Viquerat, J. Yap, M. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the medtronic-corevalve and edwards-sapien after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35:125–130, 2013.

    Article  CAS  PubMed  Google Scholar 

  54. Van Loan, C. F., and G. Golub. Matrix Computations. Johns Hopkins Studies in Mathematical Sciences. Baltimore: The Johns Hopkins University Press, 1996.

    Google Scholar 

  55. Wang, Q., E. Sirois, and W. Sun. Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J. Biomech. 45:1965–1971, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yang, H., and A. Veneziani. Efficient estimation of cardiac conductivities via POD-DEIM model order reduction. Appl. Numer. Math. 115:180–199, 2017.

    Article  Google Scholar 

  57. Yap, C. H., N. Saikrishnan, G. Tamilselvan, and A. P. Yoganathan. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 11:171–182, 2012.

    Article  PubMed  Google Scholar 

  58. Zainib, Z., F. Ballarin, S. Fremes, P. Triverio, L. Jiménez-Juan, and G. Rozza. Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. Int. J. Numer. Methods Biomed. Eng.37:e3367, 2020.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Gianluigi Rozza (SISSA, Trieste, Italy) for his scientific guidance in the development of the RBniCS project. We also acknowledge all members of the Cardiovascular Fluid Mechanics (CFM) Lab at the Georgia Institute of Technology as well as the Emory Center for Mathematics and Computing in Medicine at Emory University for their support. The research reported was supported by the NSF under Award Number DMS2012286 (PI: A. Veneziani with O. San and T. Iliescu). FB thanks the project “Reduced order modelling for numerical simulation of partial differential equations” funded by Università Cattolica del Sacro Cuore, and the INDAM-GNCS project “Metodi numerici per lo studio di strutture geometriche parametriche complesse” (CUP_E53C22001930001, PI Dr. Maria Strazzullo).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lakshmi P. Dasi or Alessandro Veneziani.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose with the research presented here.

Additional information

Associate Editor Umberto Morbiducci oversaw review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 508 kb)

Supplementary file2 (MP4 1117 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, I., Samaee, M., Razavi, A. et al. Reduced Order Modeling for Real-Time Stent Deformation Simulations of Transcatheter Aortic Valve Prostheses. Ann Biomed Eng 52, 208–225 (2024). https://doi.org/10.1007/s10439-023-03360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03360-5

Keywords

Navigation