Skip to main content
Log in

Designing a Novel Asymmetric Transcatheter Aortic Valve for Stenotic Bicuspid Aortic Valves Using Patient-Specific Computational Modeling

  • S.I. : Modeling for Advancing Regulatory Science
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bicuspid aortic valve (BAV), the most common congenital heart malformation, is characterized by the presence of only two valve leaflets with asymmetrical geometry, resulting in elliptical systolic opening. BAV often leads to early onset of calcific aortic stenosis (AS). Following the rapid expansion of transcatheter aortic valve replacement (TAVR), designed specifically for treating conventional tricuspid AS, BAV patients with AS were initially treated “off-label” with TAVR, which recently gained FDA and CE regulatory approval. Despite its increasing use in BAV, pathological BAV anatomy often leads to complications stemming from mismatched anatomical features. To mitigate these complications, a novel eccentric polymeric TAVR valve incorporating asymmetrical leaflets was designed specifically for BAV anatomies. Computational modeling was used to optimize its asymmetric leaflets for lower functional stresses and improved hemodynamic performance. Deployment and flow were simulated in patient-specific BAV models (n = 6) and compared to a current commercial TAVR valve (Evolut R 29 mm), to assess deployment and flow parameters. The novel eccentric BAV-dedicated valve demonstrated significant improvements in peak systolic orifice area, along with lower jet velocity and wall shear stress (WSS). This feasibility study demonstrates the clinical potential of the first known BAV-dedicated TAVR design, which will foster advancement of patient-dedicated valvular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AP-BAV:

Asymmetric polymeric bicuspid aortic valve

BAV:

Bicuspid aortic valve

CAVD:

Calcific aortic valve disease

CFD:

Computational fluid dynamics

EOA:

Effective orifice area

FEA:

Finite element analysis

TAV:

Trileaflet aortic valve

TAVR:

Transcatheter aortic valve replacement

SAVR:

Surgical aortic valve replacement

WSS:

Wall shear stress

References

  1. Abrams J. The aortic valve by Mano Thubrikar Crc Press, Inc., Boca Raton (1990) 221 pages, illustrated, $97.50 ISBN: 0–8493–4771–8. Clin. Cardiol. 1991;14(4):364a–5. https://doi.org/10.1002/clc.4960140417.

  2. Anam, S. B., B. J. Kovarovic, R. P. Ghosh, M. Bianchi, A. Hamdan, R. Haj-Ali, and D. Bluestein. Assessment of paravalvular leak severity and thrombogenic potential in transcatheter bicuspid aortic valve replacements using patient-specific computational modeling. J. Cardiovasc. Transl. Res. 2021. https://doi.org/10.1007/s12265-021-10191-z

    Article  Google Scholar 

  3. Anam, S. B., B. J. Kovarovic, R. P. Ghosh, M. Bianchi, A. Hamdan, R. Haj-Ali, and D. Bluestein. Validating in silico and in vitro patient-specific structural and flow models with transcatheter bicuspid aortic valve replacement procedure. Cardiovasc. Eng. Technol. 2022. https://doi.org/10.1007/s13239-022-00620-8

    Article  Google Scholar 

  4. Appa H, et al. The Technological Basis of a Balloon-Expandable TAVR System: Non-occlusive Deployment, Anchorage in the Absence of Calcification and Polymer Leaflets. Frontiers in Cardiovascular Medicine. 2022;9. doi: https://doi.org/10.3389/fcvm.2022.791949.

  5. Barati, S., N. Fatouraee, M. Nabaei, F. Berti, L. Petrini, F. Migliavacca, and J. F. Rodriguez Matas. A computational optimization study of a self-expandable transcatheter aortic valve. Comput. Biol. Med. 139:104942, 2021. https://doi.org/10.1016/j.compbiomed.2021.104942

    Article  Google Scholar 

  6. Barker CM, von Ballmoos MW, Reardon MJ. Are TAVR Hemodynamics Important in the Lower-Risk Population? Cardiac Interventions Today. 2018, (Mitral Considerations):S3-S6.

  7. Bianchi, M., G. Marom, R. P. Ghosh, H. A. Fernandez, J. R. Taylor Jr., M. J. Slepian, and D. Bluestein. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Organs. 40(12):E292-e304, 2016. https://doi.org/10.1111/aor.12806

    Article  CAS  Google Scholar 

  8. Bianchi, M., G. Marom, R. P. Ghosh, O. M. Rotman, P. Parikh, L. Gruberg, and D. Bluestein. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model. Mechanobiol. 18(2):435–451, 2019.

    Article  Google Scholar 

  9. Bollache, E., et al. Aortic valve-mediated wall shear stress is heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve-associated aortopathy. J. Thorac. Cardiovasc. Surg. 156(6):2112–2120, 2018. https://doi.org/10.1016/j.jtcvs.2018.05.095

    Article  Google Scholar 

  10. Caballero, A., F. Sulejmani, C. Martin, T. Pham, and W. Sun. Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium. J. Mech. Behav. Biomed. Mater. 75:486–494, 2017. https://doi.org/10.1016/j.jmbbm.2017.08.013

    Article  CAS  Google Scholar 

  11. Carabello, B. A. How does the heart respond to aortic stenosis. Circulation. 6(6):858–60, 2013. https://doi.org/10.1161/CIRCIMAGING.113.001242

    Article  Google Scholar 

  12. Carbonaro, D., D. Gallo, U. Morbiducci, A. Audenino, and C. Chiastra. In silico biomechanical design of the metal frame of transcatheter aortic valves: multi-objective shape and cross-sectional size optimization. Struct. Multidisc. Optim. 2021. https://doi.org/10.1007/s00158-021-02944-w

    Article  Google Scholar 

  13. Claiborne, T. E., et al. Toward optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 59(3):275–83, 2013. https://doi.org/10.1097/MAT.0b013e31828e4d80

    Article  Google Scholar 

  14. Claiborne, T. E., J. Sheriff, M. Kuetting, U. Steinseifer, M. J. Slepian, and D. Bluestein. In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J. Biomech. Eng. 135(2):021021, 2013. https://doi.org/10.1115/1.4023235

    Article  Google Scholar 

  15. Claiborne, T. E., M. J. Slepian, S. Hossainy, and D. Bluestein. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Devices. 9(6):577–594, 2012. https://doi.org/10.1586/erd.12.51

    Article  CAS  Google Scholar 

  16. Durko, A. P., R. L. Osnabrugge, and A. P. Kappetein. Long-term outlook for transcatheter aortic valve replacement. Trends Cardiovasc. Med. 28(3):174–183, 2018. https://doi.org/10.1016/j.tcm.2017.08.004

    Article  Google Scholar 

  17. Egron, S., B. Fujita, L. Gullón, D. Pott, T. Schmitz-Rode, S. Ensminger, and U. Steinseifer. Radial force: an underestimated parameter in oversizing transcatheter aortic valve replacement prostheses: in vitro analysis with five commercialized valves. ASAIO J. 64(4):536–43, 2018. https://doi.org/10.1097/mat.0000000000000659

    Article  Google Scholar 

  18. Emendi, M., et al. Patient-specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid-structure interaction approach. Ann. Biomed. Eng. 49(2):627–641, 2021. https://doi.org/10.1007/s10439-020-02571-4

    Article  Google Scholar 

  19. Ghosh, R. P., G. Marom, M. Bianchi, K. D’Souza, W. Zietak, and D. Bluestein. Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Biomech. Model. Mechanobiol. 2020. https://doi.org/10.1007/s10237-020-01304-9

    Article  Google Scholar 

  20. Ghosh, R., G. Marom, O. Rotman, M. J. Slepian, S. Prabhakar, M. Horner, and D. Bluestein. Comparative fluid-structure interaction analysis of polymeric transcatheter and surgical aortic valves’ hemodynamics and structural mechanics. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4040600

    Article  Google Scholar 

  21. Iannopollo, G., et al. Supra-annular sizing of transcatheter aortic valve prostheses in raphe-type bicuspid aortic valve disease: the LIRA method. Int. J. Cardiol. 317:144–151, 2020. https://doi.org/10.1016/j.ijcard.2020.05.076

    Article  Google Scholar 

  22. Kovarovic, B., R. Helbock, K. Baylous, O. M. Rotman, M. J. Slepian, and D. Bluestein. Visions of TAVR future: development and optimization of a second generation novel polymeric TAVR. J. Biomech. Eng. 2022. https://doi.org/10.1115/1.4054149

    Article  Google Scholar 

  23. Lavon, K., G. Marom, M. Bianchi, R. Halevi, A. Hamdan, A. Morany, E. Raanani, D. Bluestein, and R. Haj-Ali. Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: deployments and paravalvular leakage. Med. Biol. Eng. Comput. 57(10):2129–2143, 2019. https://doi.org/10.1007/s11517-019-02012-y

    Article  Google Scholar 

  24. Lavon, K., A. Morany, R. Halevi, A. Hamdan, E. Raanani, D. Bluestein, and R. Haj-Ali. Progressive calcification in bicuspid valves: a coupled hemodynamics and multiscale structural computations. Ann. Biomed. Eng. 49(12):3310–22, 2021. https://doi.org/10.1007/s10439-021-02877-x

    Article  Google Scholar 

  25. Marom, G., H.-S. Kim, M. Rosenfeld, E. Raanani, and R. Haj-Ali. Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med. Biol. Eng. Comput. 51(8):839–848, 2013. https://doi.org/10.1007/s11517-013-1055-4

    Article  Google Scholar 

  26. Martin, C., T. Pham, and W. Sun. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardiothorac. Surg. 40(1):28–34, 2011. https://doi.org/10.1016/j.ejcts.2010.08.056

    Article  Google Scholar 

  27. Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. A. 100(6):1591–1599, 2012. https://doi.org/10.1002/jbm.a.34099

    Article  CAS  Google Scholar 

  28. Martin, C., and W. Sun. Transcatheter valve underexpansion limits leaflet durability: implications for valve-in-valve procedures. Ann. Biomed. Eng. 45(2):394–404, 2017. https://doi.org/10.1007/s10439-016-1738-8

    Article  Google Scholar 

  29. Meierhofer, C., et al. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur. Heart J. Cardiovasc. Imaging. 14(8):797–804, 2012. https://doi.org/10.1093/ehjci/jes273

    Article  Google Scholar 

  30. Rocatello, G., G. De Santis, S. De Bock, M. De Beule, P. Segers, and P. Mortier. Optimization of a transcatheter heart valve frame using patient-specific computer simulation. Cardiovasc. Eng. Technol. 10(3):456–468, 2019. https://doi.org/10.1007/s13239-019-00420-7

    Article  Google Scholar 

  31. Rodrigues, I., et al. Bicuspid aortic valve outcomes. Cardiol. Young. 27(3):518–529, 2017. https://doi.org/10.1017/s1047951116002560

    Article  Google Scholar 

  32. Rotman, O. M., M. Bianchi, R. P. Ghosh, B. Kovarovic, and D. Bluestein. Principles of TAVR valve design, modelling, and testing. Expert Rev. Med. Devices. 15(11):771–791, 2018. https://doi.org/10.1080/17434440.2018.1536427

    Article  CAS  Google Scholar 

  33. Rotman, O. M., B. Kovarovic, M. Bianchi, M. J. Slepian, and D. Bluestein. In vitro durability and stability testing of a novel polymeric transcatheter aortic valve. ASAIO J. 66(2):190–8, 2020. https://doi.org/10.1097/mat.0000000000000980

    Article  Google Scholar 

  34. Rotman, O. M., B. Kovarovic, W. C. Chiu, M. Bianchi, G. Marom, M. J. Slepian, and D. Bluestein. Novel polymeric valve for transcatheter aortic valve replacement applications: in vitro hemodynamic study. Ann. Biomed. Eng. 47(1):113–25, 2019. https://doi.org/10.1007/s10439-018-02119-7

    Article  Google Scholar 

  35. Shibayama, K., K. Harada, J. Berdejo, J. Tanaka, H. Mihara, Y. Itabashi, and T. Shiota. Comparison of aortic root geometry with bicuspid versus tricuspid aortic valve: real-time three-dimensional transesophageal echocardiographic study. J. Am. Soc. Echocardiogr. 27(11):1143–1152, 2014. https://doi.org/10.1016/j.echo.2014.07.008

    Article  Google Scholar 

  36. Siu, S. C., and C. K. Silversides. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 55(25):2789, 2010. https://doi.org/10.1016/j.jacc.2009.12.068

    Article  Google Scholar 

  37. Tchetche, D., et al. Bicuspid aortic valve anatomy and relationship with devices: The BAVARD Multicenter Registry. Circulation. 12(1):e007107, 2019. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007107

    Article  Google Scholar 

  38. Vincent, F., et al. Transcatheter aortic valve replacement in bicuspid aortic valve stenosis. Circulation. 143(10):1043–1061, 2021. https://doi.org/10.1161/CIRCULATIONAHA.120.048048

    Article  CAS  Google Scholar 

  39. Yan, W., J. Li, W. Wang, L. Wei, and S. Wang. A fluid-structure interaction study of different bicuspid aortic valve phenotypes throughout the cardiac cycle. Front. Physiol. 2021. https://doi.org/10.3389/fphys.2021.716015

    Article  Google Scholar 

  40. Yoganathan, A. P. Fluid mechanics of aortic stenosis. Eur. Heart J. 9 Suppl E:13–7, 1988. https://doi.org/10.1093/eurheartj/9.suppl_e.13

    Article  CAS  Google Scholar 

  41. Yoon, S.-H., et al. Bicuspid aortic valve morphology and outcomes after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 76(9):1018–1030, 2020. https://doi.org/10.1016/j.jacc.2020.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the continued research collaboration with the Simulia Living Heart Project (Dassault Systemes), ANSYS software, and SeaWulf Cluster at Stony Brook University for providing computational resources. This project was supported by NIH-NIBIB-BRPU01EB026414 (DB), and STTR-R42HL134418-03A1.

Conflict of interest 

Authors DB and MJS have an equity interest in PolyNova Cardiovascular Inc. Author BK is a consultant of Polynova Cardiovascular Inc. All the other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 3307 kb).

Supplementary file2 (AVI 19572 kb).

Supplementary file1 (DOCX 1071 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helbock, R.T., Anam, S.B., Kovarovic, B.J. et al. Designing a Novel Asymmetric Transcatheter Aortic Valve for Stenotic Bicuspid Aortic Valves Using Patient-Specific Computational Modeling. Ann Biomed Eng 51, 58–70 (2023). https://doi.org/10.1007/s10439-022-03039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03039-3

Keywords

Navigation