Skip to main content

Advertisement

Log in

Simulation of Self Expanding Transcatheter Aortic Valve in a Realistic Aortic Root: Implications of Deployment Geometry on Leaflet Deformation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Self expanding Transcatheter Aortic Valve Replacements (TAVR) can conform to the geometry of the aortic annulus and the calcified leaflet complex, which may result in leaflet distortion and altered leaflet kinematics, but such changes have not yet been characterized. In this study we developed a computational model to investigate the deployment of a self expanding TAVR in a realistic aortic root model derived from multi-slice computed tomography (MSCT) images. We simulated TAVR crimping/deployment in realistic and idealized aortic root models, followed by diastolic loading of the TAVR leaflets in its final deployed configuration. The TAVR deployed in a realistic aortic root had increased peak loading in the commissural region of the leaflets compared to TAVRs under idealized circular deployment conditions (2.97 vs. 1.52 MPa). Furthermore, orientation of the TAVR in the asymmetric aortic annulus such that the commissures of the TAVR are aligned with the native valve commissures minimized the effect of TAVR stent distortion on peak stresses in the TAVR leaflets (2.97 vs. 2.35 MPa). We propose that preoperative planning of the orientation of the TAVR in the aortic root annulus might minimize the impact of potential stent distortion on leaflet function and may in turn increase long term leaflet durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Auricchio, F., M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput. Methods Biomech. 17:277–285, 2012.

    Article  Google Scholar 

  2. Auricchio, F., M. Conti, S. Morganti, and A. Reali. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Engin. 17:1347–1357, 2014.

  3. Auricchio, F., and R. L. Taylor. Shape-memory alloys: modeling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Biomech. 143:175–194, 1997.

    Article  Google Scholar 

  4. Auricchio, F., R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodeling and numerical simulations of the superelastic behavior. Comput. Methods Biomech. 146:281–312, 1997.

    Article  Google Scholar 

  5. Blanke, P., M. Russe, J. Leipsic, J. Reinöhl, U. Ebersberger, P. Suranyi, M. Siepe, G. Pache, M. Langer, and U. J. Schoepf. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. J. Am. Coll. Cardiol. Interv. 5:984–994, 2012.

    Article  Google Scholar 

  6. Capelli, C., G. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, F. Migliavacca, A. Taylor, and S. Schievano. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50:183–192, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Cavero, M. A., J. Goicolea, C. García-Montero, and J. F. Oteo. Prognostic implications of asymmetric morphology in transcatheter aortic valve implantation: a case report. Rev. Esp. Cardiol. 65:104–105, 2012.

    Article  PubMed  Google Scholar 

  8. Einstein, D. R., P. Reinhall, M. Nicosia, R. P. Cochran, and K. Kunzelman. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. 6:33–44, 2003.

    Article  CAS  Google Scholar 

  9. Gunning, P., N. Saikrishnan, L. McNamara, and A. Yoganathan. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42:1195–1206, 2014.

    Article  PubMed  Google Scholar 

  10. Hamdan, A., V. Guetta, E. Konen, O. Goitein, A. Segev, E. Raanani, D. Spiegelstein, I. Hay, E. Di Segni, M. Eldar, and E. Schwammenthal. Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J. Am. Coll. Cardiol. 59:119–127, 2012.

    Article  PubMed  Google Scholar 

  11. Iung, B., G. Baron, E. G. Butchart, F. Delahaye, C. Gohlke-Bärwolf, O. W. Levang, P. Tornos, J.-L. Vanoverschelde, F. Vermeer, E. Boersma, P. Ravaud, and A. Vahanian. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24:1231–1243, 2003.

    Article  PubMed  Google Scholar 

  12. Jermihov, P., L. Jia, M. Sacks, R. Gorman, J. Gorman, and K. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2:48–56, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370–2378, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Kuetting, M., A. Sedaghat, M. Utzenrath, J.-M. Sinning, C. Schmitz, J. Roggenkamp, N. Werner, T. Schmitz-Rode, and U. Steinseifer. In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. J. Biomech. 47:957–965, 2014.

    Article  PubMed  Google Scholar 

  15. Lee, J. M., S. A. Haberer, and D. R. Boughner. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium. J. Biomed. Mater. Res. 23:457–475, 1989.

    Article  CAS  PubMed  Google Scholar 

  16. Li, K., and W. Sun. Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann. Biomed. Eng. 38:2690–2701, 2010.

    Article  PubMed  Google Scholar 

  17. Marlow, R. S. A general first-invariant hyperelastic constitutive model. In: Constitutive Models for Rubber III, edited by J. J. C. Busfield and A. H. Muhr. Lisse: Swets & Zeitlinger Publishers, 2003, pp. 157–160.

  18. Martin, C., and W. Sun. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. 2013. doi:10.1007/s10237-013-0532-x.

  19. Padala, M., E. Sarin, P. Willis, V. Babaliaros, P. Block, R. Guyton, and V. Thourani. An engineering review of transcatheter aortic valve technologies. Cardiovasc. Eng. Technol. 1:77–87, 2010.

    Article  Google Scholar 

  20. Rachev, A., and S. E. Greenwald. Residual strains in conduit arteries. J. Biomech. 36:661–670, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Rodes-Cabau, J. Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. Cardiol. 9:15–29, 2012.

    Article  Google Scholar 

  22. Russ C., R. Hopf, S. Hirsch, S. Sundermann, V. Falk, G. Szekely, and M. Gessat. Simulation of transcatheter aortic valve implantation under consideration of leaflet calcification. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 711–714.

  23. Sacks, M., and C. J. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26:892–902, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Sacks, M. S., M. W. David, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42:1804–1824, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Saikrishnan, N., S. Gupta, and A. P. Yoganathan. Hemodynamics of the Boston Scientific Lotus™ Valve: an in vitro study. Cardiovasc. Eng. Technol. 4(4):427–439, 2013.

  26. Schultz, C. J., A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the CoreValve ReValving System with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54:911–918, 2009.

    Article  PubMed  Google Scholar 

  27. Smuts, A. N., D. C. Blaine, C. Scheffer, H. Weich, A. F. Doubell, and K. H. Dellimore. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. 4:85–98, 2011.

    Article  CAS  Google Scholar 

  28. Soncini, M., E. Votta, S. Zinicchino, V. Burrone, A. Mangini, M. Lemma, C. Antona, and A. Redaelli. Aortic root performance after valve sparing procedure: a comparative finite element analysis. Med. Eng. Phys. 31:234–243, 2009.

    Article  PubMed  Google Scholar 

  29. Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085–3090, 2010.

    Article  PubMed  Google Scholar 

  30. Sung, H.-W., Y. Chang, C.-T. Chiu, C.-N. Chen, and H.-C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47:116–126, 1999.

    Article  CAS  PubMed  Google Scholar 

  31. Trowbridge, E. A., and C. E. Crofts. The extension rate independence of the hysteresis in glutaraldehyde-fixed bovine pericardium. Biomaterials 8:201–206, 1987.

    Article  CAS  PubMed  Google Scholar 

  32. Tseng, E. E., A. Wisneski, A. N. Azadani, and L. Ge. Engineering perspective on transcatheter aortic valve implantation. Int. Cardiol. 5:53–70, 2013.

    Article  Google Scholar 

  33. Tzamtzis, S., J. Viquerat, J. Yap, M. J. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35:125–130, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Q., E. Sirois, and W. Sun. Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J. Biomech. 45:1965–1971, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Xiong, F., W. Goetz, C. Chong, Y. Chua, S. Pfeifer, E. Wintermantel, and J. Yeo. Finite element investigation of stentless pericardial aortic valves: relevance of leaflet geometry. Ann. Biomed. Eng. 38:1908–1918, 2010.

    Article  PubMed  Google Scholar 

  36. Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery—determination of the optimum modeling strategy. J. Biomech. 43:2126–2132, 2010.

    Article  PubMed  Google Scholar 

  37. Zegdi, R., V. Ciobotaru, N. Miléna, S. Ghassan, L. Antoine, L. Christian, D. Alain, and F. Jean-Noël. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent?: results from a human anatomic study in adults. J. Am. Coll. Cardiol. 51:579–584, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Engineering and Informatics Fellowship, National University of Ireland Galway, Science Foundation Ireland Short Term Travel Fellowship Award and the Irish Centre for High-End Computing (ICHEC).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laoise M. McNamara.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunning, P.S., Vaughan, T.J. & McNamara, L.M. Simulation of Self Expanding Transcatheter Aortic Valve in a Realistic Aortic Root: Implications of Deployment Geometry on Leaflet Deformation. Ann Biomed Eng 42, 1989–2001 (2014). https://doi.org/10.1007/s10439-014-1051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1051-3

Keywords

Navigation