Skip to main content
Log in

Novel Method to Track Soft Tissue Deformation by Micro-Computed Tomography: Application to the Mitral Valve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Increasing availability of micro-computed tomography (µCT) as a structural imaging gold-standard is bringing unprecedented geometric detail to soft tissue modeling. However, the utility of these advances is severely hindered without analogous enhancement to the associated kinematic detail. To this end, labeling and following discrete points on a tissue across various deformation states is a well-established approach. Still, existing techniques suffer limitations when applied to complex geometries and large deformations and strains. Therefore, we herein developed a non-destructive system for applying fiducial markers (minimum diameter: 500 µm) to soft tissue and tracking them through multiple loading conditions by µCT. Using a novel applicator to minimize adhesive usage, four distinct marker materials were resolvable from both tissue and one another, without image artifacts. No impact on tissue stiffness was observed. µCT addressed accuracy limitations of stereophotogrammetry (inter-method positional error 1.2 ± 0.3 mm, given marker diameter 1.9 ± 0.1 mm). Marker application to ovine mitral valves revealed leaflet Almansi areal strains (45 ± 4%) closely matching literature values, and provided radiographic access to previously inaccessible regions, such as the leaflet coaptation zone. This system may meaningfully support mechanical characterization of numerous tissues or biomaterials, as well as tissue-device interaction studies for regulatory standards purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol. 177:49–57, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bornert, M. X-ray micro CT for studying strain localization in clay rocks under triaxial compression. Adv. X-ray Tomogr. Geomater. 118:35, 2010.

    Google Scholar 

  3. Cappozzo, A., U. Della Croce, A. Leardini, and L. Chiari. Human movement analysis using stereophotogrammetry: Part 1: theoretical background. Gait Posture 21:186–196, 2005.

    PubMed  Google Scholar 

  4. Chiari, L., U. Della Croce, A. Leardini, and L. Chiari. Human movement analysis using stereophotogrammetry: Part 2: instrumental errors. Gait Posture 21:197–211, 2005.

    Article  PubMed  Google Scholar 

  5. Cosentino, D., I. Zwierzak, S. Schievano, V. Díaz-Zuccarini, J. W. Fenner, and A. J. Narracott. Uncertainty assessment of imaging techniques for the 3D reconstruction of stent geometry. Med. Eng. Phys. 36:1062–1068, 2014.

    Article  PubMed  Google Scholar 

  6. Forsberg, F., M. Sjödahl, R. Mooser, E. Hack, and P. Wyss. Full Three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46:47–60, 2010.

    Article  Google Scholar 

  7. Gayzik, F. S., J. J. Hoth, and J. D. Stitzel. Finite element–based injury metrics for pulmonary contusion via concurrent model optimization. Biomech. Modeling Mechanobiol. 10:505–520, 2011.

    Article  Google Scholar 

  8. Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34:315–325, 2006.

    Article  PubMed  Google Scholar 

  9. Grbic S., T. F. Easley, T. Mansi, C. H. Bloodworth, E. L. Pierce, I. Voigt, D. Neumann, J. Krebs, D. D. Yuh and M. O. Jensen. Multi-modal validation framework of mitral valve geometry and functional computational models. In: Statistical Atlases and Computational Models of the Heart-Imaging and Modelling Challenges. Berlin: Springer, pp. 239–248, 2015.

  10. He, Z., M. Sacks, L. Baijens, S. Wanant, P. Shah, and A. Yoganatdhan. Effects of papillary muscle position on in vitro dynamic strain on the porcine mitral valve. J. Heart Valve Dis. 12:488–494, 2003.

    PubMed  Google Scholar 

  11. Ionescu, M., R. W. Metcalfe, D. Cody, M. V. y Alvarado, J. Hipp, and G. Benndorf. Spatial resolution limits of multislice computed tomography (MS-CT), C-arm-CT, and flat panel-CT (FP-CT) compared to MicroCT for visualization of a small metallic stent. Acad. Radiol. 18:866–875, 2011.

    Article  PubMed  Google Scholar 

  12. Iyengar, A. K., H. Sugimoto, D. B. Smith, and M. S. Sacks. Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann. Biomed. Eng. 29:963–973, 2001.

    Article  PubMed  Google Scholar 

  13. Jimenez, J. H., S. W. Liou, M. Padala, Z. He, M. Sacks, R. C. Gorman, J. H. Gorman, and A. P. Yoganathan. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. thorac. Cardiovasc. Surg. 134:1562–1568, 2007.

    Article  PubMed  Google Scholar 

  14. Khalighi A. H., A. Drach, F. M. ter Huurne, C.-H. Lee, C. Bloodworth, E. L. Pierce, M. O. Jensen, A. P. Yoganathan and M. S. Sacks. A comprehensive framework for the characterization of the complete mitral valve geometry for the development of a population-averaged model. In: Functional Imaging and Modeling of the Heart. Berlin: Springer, pp. 164–171, 2015.

  15. Kim, Y., S.-W. Chang, J.-K. Lee, I.-P. Chen, B. Kaufman, J. Jiang, B. Y. Cha, Q. Zhu, K. E. Safavi, and K.-Y. Kum. A micro-computed tomography study of canal configuration of multiple-canalled mesiobuccal root of maxillary first molar. Clin. Oral Investig. 17:1541–1546, 2013.

    Article  PubMed  Google Scholar 

  16. Kunzelman, K. S., and R. Cochran. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71–78, 1992.

    Article  CAS  PubMed  Google Scholar 

  17. Laurent, C. P., P. Latil, D. Durville, R. Rahouadj, C. Geindreau, L. Orgéas, and J.-F. Ganghoffer. Mechanical behaviour of a fibrous scaffold for ligament tissue engineering: Finite elements analysis vs. X-ray tomography imaging. J. Mech. Behav. Biomed. Mater. 40:222–233, 2014.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, L., and E. F. Morgan. Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J. Biomech. 40:3516–3520, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nezarati, R. M., M. B. Eifert, D. K. Dempsey, and E. Cosgriff-Hernandez. Electrospun vascular grafts with improved compliance matching to native vessels. J. Biomed. Mater. Res. Part B 103:313–323, 2015.

    Article  Google Scholar 

  20. Rabbah, J.-P. M., A. W. Siefert, S. F. Bolling, and A. P. Yoganathan. Mitral valve annuloplasty and anterior leaflet augmentation for functional ischemic mitral regurgitation: quantitative comparison of coaptation and subvalvular tethering. J. Thorac. Cardiovasc. Surg. 148:1688–1693, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roberts, B. C., E. Perilli, and K. J. Reynolds. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: A literature review. J. Biomech. 47:923–934, 2014.

    Article  PubMed  Google Scholar 

  22. Sacks, M., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30:1281–1290, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Siefert, A. W., D. A. Icenogle, J.-P. M. Rabbah, N. Saikrishnan, J. Rossignac, S. Lerakis, and A. P. Yoganathan. Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data. Ann. Biomed. Eng. 41:1258–1268, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Siefert, A. W., J. P. M. Rabbah, K. J. Koomalsingh, S. A. Touchton, N. Saikrishnan, J. R. McGarvey, R. C. Gorman, J. H. Gorman, and A. P. Yoganathan. In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann. Thorac. Surg. 95:825–830, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun, W., C. Martin, and T. Pham. Computational modeling of cardiac valve function and intervention. Ann. Rev. Biomed. Eng. 16:53–76, 2014.

    Article  Google Scholar 

  26. Watzke, O., and W. A. Kalender. A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur. Radiol. 14:849–856, 2004.

    Article  PubMed  Google Scholar 

  27. Yambe, M., H. Tomiyama, Y. Hirayama, Z. Gulniza, Y. Takata, Y. Koji, K. Motobe, and A. Yamashina. Arterial stiffening as a possible risk factor for both atherosclerosis and diastolic heart failure. Hypertens. Res. 27:625–631, 2004.

    Article  PubMed  Google Scholar 

  28. Yap, C. H., H.-S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am. J. Physiol. Heart Circ. Physiol. 298:H395–H405, 2010.

    Article  CAS  PubMed  Google Scholar 

  29. Zauel, R., Y. Yeni, B. Bay, X. Dong, and D. Fyhrie. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J. Biomech. Eng. 128:1–6, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Zwierzak, I., D. Cosentino, A. Narracott, P. Bonhoeffer, V. Diaz, J. Fenner, and S. Schievano. Measurement of in vitro and in vivo stent geometry and deformation by means of 3D imaging and stereo-photogrammetry. Int. J. Artif. Organs 37:918–927, 2015.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation Graduate Research Fellowship (ELP) under grant DGE-1148903, as well as by the National Heart, Lung, and Blood Institute under Grant R01HL119297. The authors would also like to thank Andrew Siefert for his contributions to the experimental design and Kathleen McNeeley for her technical assistance with μCT imaging.

Conflict of interest

No benefits in any form have been received from a commercial party related directly or indirectly to the subject of this manuscript. The authors (ELP, CHB, AN, MOJ, APY) have a patent pending (Provisional Application Number 62/173,610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierce, E.L., Bloodworth, C.H., Naran, A. et al. Novel Method to Track Soft Tissue Deformation by Micro-Computed Tomography: Application to the Mitral Valve. Ann Biomed Eng 44, 2273–2281 (2016). https://doi.org/10.1007/s10439-015-1499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1499-9

Keywords

Navigation