Skip to main content
Log in

Biaixal Stress–Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Characterization of the mechanical properties of the native mitral valve leaflets at physiological strain rates is a critical step in improving our understanding of MV function and providing experimental data for dynamic constitutive models. We explored, for the first time, the effects of strain rate (from quasi-static to physiologic) on the biaxial mechanical properties of the native mitral valve anterior leaflet (MVAL). A novel high-speed biaxial testing device was developed, capable of achieving in vitro strain rates reported for the MVAL (Sacks et al., Ann. Biomed. Eng. 30(10):1280–1290, 2002). Porcine MVAL specimens were loaded to physiological load levels with cycle periods of 15, 1, 0.5, 0.1, and 0.05 s. The resulting loading stress–strain responses were found to be remarkably independent of strain rate. The hysteresis, defined as the fraction of the membrane strain energy between the loading and unloading curves tension-areal stretch curves, was low (∼12%) and did not vary with strain rate. The results of the present work indicated that MVAL tissues exhibit complete strain rate insensitivity at and below physiological strain rates under physiological loading conditions. These novel results suggest that experimental tests utilizing quasi-static strain rates are appropriate for constitutive model development for mitral valve tissues. The mechanisms underlying this quasi-elastic behavior are as yet unknown, but are likely an important functional aspect of native mitral valve tissues and clearly warrant further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

REFERENCES

  1. Alfieri, O., and F. Maisano. An effective technique to correct anterior mitral leaflet prolapse. J. Card. Surg. 14(6):468–470, 1999.

    Article  PubMed  CAS  Google Scholar 

  2. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–Part I: Experimental results. J. Biomech. Eng. 122(1):23–30, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Borer, J. S., and K. Kupfer. Mitral regurgitation: Current treatment options and their selection. Curr. Treat. Options Cardiovasc. Med. 6(6):509–517, 2004.

    Article  PubMed  Google Scholar 

  4. Carew, E. O., A. Garg, J. E. Barber, and I. Vesely. Stress relaxation preconditioning of porcine aortic valves. Ann. Biomed. Eng. 32(4):563–572, 2004.

    Article  PubMed  Google Scholar 

  5. Cole, W. G., D. Chan, A. J. Hickey, and D. E. Wilcken. Collagen composition of normal and myxomatous human mitral heart valves. Biochem. J. 219(2):451–460, 1984.

    PubMed  CAS  Google Scholar 

  6. Curtis, M. B., and D. V. Priola. Mechanical properties of the canine mitral valve: Effects of autonomic stimulation. Am. J. Physiol. 262(1 Pt 2): H56–H62, 1992.

    PubMed  CAS  Google Scholar 

  7. David, T. E., M. Komeda, C. Pollick, and R. J. Burns. Mitral valve annuloplasty: The effect of the type on left ventricular function. Ann. Thorac Surg. 47(4):524–527, 1989; discussion 527–528.

    Article  PubMed  CAS  Google Scholar 

  8. Doehring, T. C., E. O. Carew, and I. Vesely. The effect of strain rate on the viscoelastic response of aortic valve tissue: A direct-fit approach. Ann. Biomed. Eng. 32(2):223–2302, 2004.

    Article  PubMed  Google Scholar 

  9. El Khoury, G., P. Noirhomme, R. Verhelst, J. Rubay, and R. Dion. Surgical repair of the prolapsing anterior leaflet in degenerative mitral valve disease. J. Heart Valve Dis. 9(1):75–80, 2000; discussion 81.

    PubMed  CAS  Google Scholar 

  10. Gilbert, T. W., M. S. Sacks, J. S. Grashow, S. L. Y. Woo, M. B. Chancellor, and S. F. Badylak. Fiber kinematics of small intestinal submucosa under uniaxial and biaxial stretch. J. Biomech. Eng., in press.

  11. Hashim, S. R., A. Fontaine, S. He, R. A. Levine, and A. P. Yoganathan. A three-component force vector cell for in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall. J. Biomech. 30(10):1071–1075, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Haut, R. C. Age-dependent influence of strain rate on the tensile failure of rat-tail tendon. J. Biomech. Eng. 105(3):296–299, 1983.

    PubMed  CAS  Google Scholar 

  13. He, S., A. A. Fontaine, E. Schwammenthal, A. P. Yoganathan, and R. A. Levine. Integrated mechanism for functional mitral regurgitation: Leaflet restriction versus coapting force: In vitro studies. Circulation 96(6):1826–1834, 1997.

    PubMed  CAS  Google Scholar 

  14. He, Z., M. S. Sacks, L. Baijens, S. Wanant, P. Shah, and A. P. Yoganathan. Effects of papillary muscle position on in vitro dynamic strain on the porcine mitral valve. J. Heart Valve Dis. 12(4):488–494, 2003.

    PubMed  Google Scholar 

  15. Kreindel, M. S., W. A. Schiavone, H. M. Lever, and D. Cosgrove. Systolic anterior motion of the mitral valve after carpentier ring valvuloplasty for mitral valve prolapse. Am. J. Cardiol. 57(6):408–412, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Kunzelman, K. S., M. S. Sacks, R. P. Cochran, and R. C. Eberhart. Mitral valve leaflet collagen distribution by laser analysis. In: Proceedings of the Seventh Southern Biomedical Engineering Conference, TX: Dallas, 1988, pp. 82–85.

  17. Lam, J. H., N. Ranganathan, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: A new classification. Circulation 41(3):449–458, 1970.

    PubMed  CAS  Google Scholar 

  18. Lanir, Y. A structural theory for the homogeneous biaxial stress–strain relationships in flat collageneous tissues. J. Biomech. 12:423–436, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, J. M., D. W. Courtman, and D. R. Boughner. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material. J. Biomed. Mater. Res. 18:61–77, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Leeson-Dietrich, J., D. Boughner, and I. Vesely. Porcine pulmonary and aortic valves: A comparison of their tensile viscoelastic properties at physiological strain rates. J. Heart Valve Dis. 4:88–94, 1995.

    PubMed  CAS  Google Scholar 

  22. Liao, J., L. Yang, J. Grashow, and M. S. Sacks. Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomater. 1(1), 2004.

  23. Lim, K. O., and D. R. Boughner. Low frequency dynamic viscoelastic properties of human mitral valve tissue. Cardiovasc. Res. 10(4):45–54, 1976.

    Article  Google Scholar 

  24. Lis, Y., M. C. Burleigh, D. J. Parker, A. H. Child, J. Hogg, and M. J. Davies. Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. Biochem. J. 244(3):597–603, 1987.

    PubMed  CAS  Google Scholar 

  25. Lydon, C., J. Crisco, M. Panjabi, and M. Galloway. Effect of elongation rate on the failure properties of the rabbit anterior cruciate ligament. Clin. Biomech. (Bristol, Avon) 10(8):428–433, 1995.

    Article  Google Scholar 

  26. May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269(4 Pt 2):H1319–H1327, 1995.

    PubMed  CAS  Google Scholar 

  27. May-Newman, K., and F. C. Yin. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Merryman, W. D., H. Y. S. Huang, F. J. Schoen, and M. S. Sacks. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech., 39(1):88–96, 2006.

    Article  PubMed  Google Scholar 

  29. Naimark, W. A. Structure/function relations in mammalian pericardial tissue: Implications for comparative and developmental physiology, University of Toronto, 1995.

  30. Naimark, W. A., J. M. Lee, H. Limeback, and D. Cheung. Correlation of structure and viscoelastic properties in the pericardia of four mammalian species. Am. J. Physiol. 263(32):H1095–H1106, 1992.

    PubMed  CAS  Google Scholar 

  31. Naimark, W. A., S. D. Waldman, R. J. Anderson, B. Suzuki, C. A. Pereira, and J. M. Lee. Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium. Biorheology 35(1):1–16, 1998.

    Article  PubMed  CAS  Google Scholar 

  32. Ormiston, J. A., P. M. Shah, C. Tei, and M. Wong. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64(1):113–120, 1981.

    PubMed  CAS  Google Scholar 

  33. Otto, C. M. Valvular Heart Disease. Philadelphia: Saunders, 2004.

    Google Scholar 

  34. Perier, P., B. Clausnizer, and K. Mistarz. Carpentier “sliding leaflet” technique for repair of the mitral valve: Early results. Ann. Thoracic Surg. 57:383–386, 1994.

    Article  CAS  Google Scholar 

  35. Perloff, J. K., and W. C. Roberts. The mitral apparatus: Functional anatomy of mitral regurgitation. Circulation 46:227–239, 1972.

    PubMed  CAS  Google Scholar 

  36. Ranganathan, N., J. H. Lam, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. II. The value leaflets. Circulation 41(3):459–467, 1970.

    PubMed  CAS  Google Scholar 

  37. Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elasticity 61:199–246, 2000.

    Article  Google Scholar 

  38. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.

    Article  PubMed  CAS  Google Scholar 

  39. Silverman, M. E., and J. W. Hurst. The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Am. Heart J. 76(3):399–418, 1968.

    Article  PubMed  CAS  Google Scholar 

  40. Smedira, N. G., R. Selman, D. M. Cosgrove, P. M. McCarthy, B. W. Lytle, P. C. Taylor, C. Apperson-Hansen, R. W. Stewart, and F. D. Loop. Repair of anterior leaflet prolapse: Chordal transfer is superior to chordal shortening. J. Thorac Cardiovasc. Surg. 112(2):287–291, 1996; discussion 291–292.

    Article  PubMed  CAS  Google Scholar 

  41. Woo, S. L., M. A. Gomez, and W. H. Akeson. The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J. Biomech. Eng. 103(4):293–298, 1981.

    PubMed  CAS  Google Scholar 

  42. Woo, S. L. Y., C. A. Orlando, J. F. Camp, and W. H. Akeson. Effects of postmortem storage by freezing on ligament tensile behavior. J. Biomech. 19:399–404, 1994.

    Article  Google Scholar 

  43. Yacoub, M. H., and L. H. Cohn. Novel approaches to cardiac valve repair: From structure to function: Part II. Circulation 109(9):1064–1072, 2004.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by NIH grant HL-52009. MSS is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grashow, J.S., Yoganathan, A.P. & Sacks, M.S. Biaixal Stress–Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates. Ann Biomed Eng 34, 315–325 (2006). https://doi.org/10.1007/s10439-005-9027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9027-y

Keywords

Navigation