Skip to main content
Log in

Probing the Depth of the Myocardium: Vasculature, Transit Time, and Perfusion Within the Left Ventricular Wall

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The branching architecture of arterial trees traversing the thickness of the left ventricular wall is studied to determine the way in which adequate blood supply is provided to myocardial tissue at different depths within the wall thickness from arterial trees originating at the epicardial surface. The study is based on micro-CT images of tissue biopsies, coupled with a dedicated vascular tree analysis program. The results show that this combination of methodologies allows a more detailed and much more accurate exploration of the vasculature within the sampled tissue than is possible by histological means. The spatial density of the smallest resolvable “end” arterioles is found to be higher in the sub-endocardial region than in the sub-epicardial region, with vascular branching architecture consistent with a fractal structure. The concept of “transit time” is introduced as an approximate measure of the time it takes bulk flow to reach different regions of the myocardium. Our data suggest that a transit time differential is a major contributor to the equalization of transmural perfusion gradient against unequal distribution of “end’ arteriolar density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ashikaga, H., B. A. Coppola, K. G. Yamazaki, J. Villarreal, J. H. Omens, and J. W. Covell. Changes in regional myocardial volume during cardiac cycle: implications for transmural blood flow and cardiac structure. Am. J. Physiol. Heart Circ. Physiol. 295:H610–H618, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ball, R. M., R. J. Bache, F. R. Cobb, and J. C. Greenfield. Regional Myocardial Blood flow during graded treadmill exercise in the dog. J. Clin. Invest. 55:43–49, 1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590, 1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bassingthwaighte, J. B., J. H. G. M. Van Beek, and R. B. King. Fractal branches: The basis of myocardial flow heterogeneities? Ann. N. Y. Acad. Sci. 591:392–401, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falsetti, H. L., R. J. Carroll, and M. L. Marcus. Temporal heterogeneity of myocardial blood flow in anesthetized dogs. Circulation 52:848–853, 1975.

    Article  CAS  PubMed  Google Scholar 

  6. Feldkamp, L. A., L. L. Davis, and J. W. Kress. Practical cone- beam algorithm. J. Opt. Soc. Am. 1:612–619, 1984.

    Article  Google Scholar 

  7. Hudlicka, O., and M. D. Brown. Cardiac work and capillary density in normal and vascularly compromised hearts. Int. J. Microcirc. Clin. Exp. 8(4):365–382, 1989.

    CAS  PubMed  Google Scholar 

  8. Iversen, P. O., and G. Nicolaysen. Fractals describe blood flow heterogeneity within skeletal muscle and within myocardium. Am. J. Physiol. Heart Circ. Physiol. 268:H112–H116, 1995.

    Article  CAS  Google Scholar 

  9. Jorgensen, S. M., O. Demirkya, and E. L. Ritman. Three-Dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am. J. Physiol. Heart Circ. Physiol. 44:1033–1114, 1998.

    Google Scholar 

  10. Kaimovitz, B., Y. Lanir, and G. S. Kassab. A full 3-D reconstruction of the entire porcine coronary vasculature. Am. J. Physiol. Heart Circ. Physiol. 299(4):H1064–H1076, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kline, T. L., M. Zamir, and E. L. Ritman. Accuracy of microvascular measurements obtained from micro-CT images. Ann. Biomed. Eng. 38(9):2851–2864, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kuo, L., M. J. Davis, and W. M. Chilian. Longitudinal gradients for endothelial dependent and independent vascular responses in the coronary circulation. Circulation 92:518–525, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Larghat, A., J. Biglands, N. Maredia, J. P. Greenwood, S. G. Ball, M. Jerosch-Herold, A. Radjenovic, and S. Plein. Endocardial and epicardial myocardial perfusion determined by semi-quantitative and quantitative myocardial perfusion magnetic resonance. Int. J. Cardiovasc. Imaging 28:1499–1511, 2012.

    Article  PubMed  Google Scholar 

  14. Marks II, R. J. Introduction to Shannon Sampling and Interpolation Theory. Berlin: Springer, p. 278 pp, 1991.

    Book  Google Scholar 

  15. Mayrovitz, H. N., and J. Roy. Microvascular blood flow: evidence indicates cubic dependence on arterial diameter. Am. J. Physiol. Heart Circ. Physiol. 245(6):H1031–H1038, 1983.

    Article  CAS  Google Scholar 

  16. Mittal, N., Y. Zhou, C. Linares, S. Ung, B. Kaimovitz, S. Molloi, and G. S. Kassab. Analysis of blood flow in the entire coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 289:H439–H446, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. U.S.A. 12:207–214, 1916.

    Article  Google Scholar 

  18. Ohuchi, H., P. E. Beighley, Y. Dong, M. Zamir, and E. L. Ritman. Microvascular development in porcine right and left ventricular walls. Pediatr. Res. 61(6):676–680, 2007.

    Article  PubMed  Google Scholar 

  19. Pullen, B. R., R. T. Ritchings, and I. Isherwood. Accuracy and meaning of computed tomography attenuation values. In: Technical Aspects of Computed Tomography, edited by T. H. Newton, and D. G. Potts. St. Louis: Mosby, 1981, pp. 3904–3917.

    Google Scholar 

  20. Spiller, P., F. K. Schmiel, B. Politz, M. Block, U. Fermor, W. Hackbarth, J. Jehle, R. Korfer, and H. Pannek. Measurement of systolic and diastolic flow rates in the coronary artery system by X-ray densitometry. Circulation 68(2):337–347, 1983.

    Article  CAS  PubMed  Google Scholar 

  21. Toyota, E., Y. Ogasawara, O. Hiramatsu, H. Tachibana, F. Kajiya, S. Yamamori, and W. M. Chilian. Dynamics of flow velocities in endocardial and epicardial coronary arterioles. Am. J. Physiol. Heart Circ. Physiol. 288(4):H1598–H1603, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Van Beek, J. H., S. A. Roger, and J. B. Bassingthwaighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 257(5 Pt 2):H1670–H1680, 1989.

    PubMed  Google Scholar 

  23. Van Horssen, P., J. P. P. M. van de Wijngaard, M. J. Brandt, I. E. Hoeffer, J. A. E. Spaan, and M. Siebes. Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium. Am. J. Physiol. Heart Circ. Physiol. 306:H496–H504, 2014.

    Article  CAS  PubMed  Google Scholar 

  24. Vitullo, J. C., M. S. Penn, K. M. Rakusan, and P. Wicker. Effects of hypertension and aging on coronary arteriolar density. Hypertension 21:406–414, 1993.

    Article  CAS  PubMed  Google Scholar 

  25. Wyman, B. T., W. C. Hunter, F. W. Prinzen, and E. R. McVeigh. Mapping propagation of mechanical activation in the paced heart with MRI tagging. Am. J. Physiol. Heart Circ. Physiol. 45:H881–H891, 1999.

    Article  Google Scholar 

  26. Zamir, M. Distributing and delivery vessels of the human heart. J. Gen. Physiol. 91(5):725–735, 1988.

    Article  CAS  PubMed  Google Scholar 

  27. Zamir, M. The Physics of Pulsatile Flow. New York: Springer, p. 185, 2000.

    Book  Google Scholar 

  28. Zamir, M., A. J. Vercnocke, P. K. Edwards, J. L. Anderson, S. M. Jorgensen, and E. L. Ritman. Myocardial perfusion, characteristics of distal intramyocardial arteriolar trees. Ann. Biomed. Eng. 43:2772–2779, 2015.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded in part by National Institutes of Health grant, R021 HL-117359. Special thanks to Ms. J. L. Anderson and Mr. S. M. Jorgensen for their performance of the animal experiment and micro-CT scanning as well as Ms. D. C. Darling for assembling and formatting this manuscript.

Conflict of Interest

There are no conflict of interests with any one of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik L. Ritman.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritman, E.L., Vercnocke, A.J. & Zamir, M. Probing the Depth of the Myocardium: Vasculature, Transit Time, and Perfusion Within the Left Ventricular Wall. Ann Biomed Eng 47, 1281–1290 (2019). https://doi.org/10.1007/s10439-019-02208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02208-1

Keywords

Navigation