Skip to main content

Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models

  • Chapter
  • First Online:
Microcirculation

Abstract

The coronary microvasculature is responsible for maintaining local matching of myocardial blood flow to myocardial demand of oxygen and nutrients. Long term adjustment of myocardial blood flow involves structural changes in microvascular density and diameter while fine-tuning of flow is achieved via adaptations in vascular smooth muscle tone in the coronary microvasculature.

In the past several decades, considerable research efforts have been directed at understanding structural and functional microvascular adaptations involved in matching myocardial oxygen supply and demand and how these mechanisms are affected by various diseases. In this review we will discuss our current understanding of the mechanisms underlying the regulation of coronary microvascular tone under healthy physiological conditions, and the role of microvascular dysfunction in obstructive and non-obstructive coronary artery disease, as studied in large animal (particularly swine) models and confirmed in human studies. Future studies should be directed at further unraveling the mechanisms of coronary microvascular dysfunction in different disease entities in order to, and ultimately directed at improving microvascular function as a therapeutic target in patients with ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009–86.

    Article  CAS  PubMed  Google Scholar 

  2. Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017;7(2):321–82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol. 2012;2(1):321–447.

    Article  PubMed  Google Scholar 

  4. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Phys. 1986;251(4 Pt 2):H779–88.

    CAS  Google Scholar 

  5. Jones CJ, Kuo L, Davis MJ, Chilian WM. Distribution and control of coronary microvascular resistance. Adv Exp Med Biol. 1993;346:181–8.

    Article  CAS  PubMed  Google Scholar 

  6. Duncker DJC, Canty JM Jr. Coronary blood flow and myocardial ischemia. In: Braunwald E, editor. Braunwald’s heart disease: a textbook of cardiovascular medicine. Philadelphia: Elsevier; 2018.

    Google Scholar 

  7. Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1(8):804–9.

    Article  CAS  PubMed  Google Scholar 

  8. Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther. 2000;86(1):87–110.

    Article  CAS  PubMed  Google Scholar 

  9. Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol. 2016;86:31–40.

    Article  CAS  Google Scholar 

  10. Dhaun N, Webb DJ. Endothelins in cardiovascular biology and therapeutics. Nat Rev Cardiol. 2019;16(8):491–502.

    Article  PubMed  Google Scholar 

  11. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, Piek JJ, de Wit C. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134–46.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang CH, Rogers PA, Merkus D, Muller-Delp JM, Tiefenbacher CP, Potter B, Knudson JD, Rocic P, Chilian WM. Regulation of coronary microvascular resistance in health and disease. In: Tuma RF, Duran WN, Ley K, editors. Handbook of physiology: microcirculation. Boston: Elsevier; 2008.

    Google Scholar 

  13. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, Hakobyan T, Luli J, Graham K, Khayata M, Logan S, Kmetz J, Chilian WM. Kv1.3 channels facilitate the connection between metabolism and blood flow in the heart. Microcirculation. 2017;24(4):e12334.

    Article  CAS  Google Scholar 

  15. Jackson WF. KV channels and the regulation of vascular smooth muscle tone. Microcirculation. 2018;25(1):e12421.

    Article  CAS  Google Scholar 

  16. Baek EB, Kim SJ. Mechanisms of myogenic response: Ca(2+)-dependent and -independent signaling. J Smooth Muscle Res. 2011;47(2):55–65.

    Article  PubMed  Google Scholar 

  17. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, Hill MA, Meininger GA. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol. 2001;280(4):H1427–33.

    Article  CAS  PubMed  Google Scholar 

  18. Beyer AM, Zinkevich N, Miller B, Liu Y, Wittenburg AL, Mitchell M, Galdieri R, Sorokin A, Gutterman DD. Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol. 2017;112(1):5.

    Article  PubMed  CAS  Google Scholar 

  19. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  20. VanBavel E, Bakker EN, Pistea A, Sorop O, Spaan JA. Mechanics of microvascular remodeling. Clin Hemorheol Microcirc. 2006;34(1–2):35–41.

    PubMed  Google Scholar 

  21. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, Brindis RG, Douglas PS. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5(2):193–202.

    Article  PubMed  Google Scholar 

  23. Duncker DJ, Koller A, Merkus D, Canty JM Jr. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 2015;57(5):409–22.

    Article  PubMed  Google Scholar 

  24. Canty JM Jr, Suzuki G. Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol. 2012;52(4):822–31.

    Article  CAS  PubMed  Google Scholar 

  25. Sorop O, Merkus D, de Beer VJ, Houweling B, Pistea A, McFalls EO, Boomsma F, van Beusekom HM, van der Giessen WJ, VanBavel E, Duncker DJ. Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ Res. 2008;102(7):795–803.

    Article  CAS  PubMed  Google Scholar 

  26. Urbieta Caceres VH, Lin J, Zhu XY, Favreau FD, Gibson ME, Crane JA, Lerman A, Lerman LO. Early experimental hypertension preserves the myocardial microvasculature but aggravates cardiac injury distal to chronic coronary artery obstruction. Am J Physiol Heart Circ Physiol. 2011;300(2):H693–701.

    Article  PubMed  CAS  Google Scholar 

  27. Sorop O, Bakker EN, Pistea A, Spaan JA, VanBavel E. Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels. Am J Physiol Heart Circ Physiol. 2006;291(3):H1236–45.

    Article  CAS  PubMed  Google Scholar 

  28. Verhoeff BJ, Siebes M, Meuwissen M, Atasever B, Voskuil M, de Winter RJ, Koch KT, Tijssen JG, Spaan JA, Piek JJ. Influence of percutaneous coronary intervention on coronary microvascular resistance index. Circulation. 2005;111(1):76–82.

    Article  PubMed  Google Scholar 

  29. Shimoni S, Frangogiannis NG, Aggeli CJ, Shan K, Quinones MA, Espada R, Letsou GV, Lawrie GM, Winters WL, Reardon MJ, Zoghbi WA. Microvascular structural correlates of myocardial contrast echocardiography in patients with coronary artery disease and left ventricular dysfunction: implications for the assessment of myocardial hibernation. Circulation. 2002;106(8):950–6.

    Article  PubMed  Google Scholar 

  30. Kelly RF, Cabrera JA, Ziemba EA, Crampton M, Anderson LB, McFalls EO, Ward HB. Continued depression of maximal oxygen consumption and mitochondrial proteomic expression despite successful coronary artery bypass grafting in a swine model of hibernation. J Thorac Cardiovasc Surg. 2011;141(1):261–8.

    Article  CAS  PubMed  Google Scholar 

  31. Duffy SJ, Castle SF, Harper RW, Meredith IT. Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation. Circulation. 1999;100(19):1951–7.

    Article  CAS  PubMed  Google Scholar 

  32. Friedman PL, Brown EJ Jr, Gunther S, Alexander RW, Barry WH, Mudge GH Jr, Grossman W. Coronary vasoconstrictor effect of indomethacin in patients with coronary-artery disease. N Engl J Med. 1981;305(20):1171–5.

    Article  CAS  PubMed  Google Scholar 

  33. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, Johnson BD, Sopko G, Bairey Merz CN. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (women’s ischemia syndrome evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zijlstra F, Patel A, Jones M, Grines CL, Ellis S, Garcia E, Grinfeld L, Gibbons RJ, Ribeiro EE, Ribichini F, Granger C, Akhras F, Weaver WD, Simes RJ. Clinical characteristics and outcome of patients with early (<2 h), intermediate (2-4 h) and late (>4 h) presentation treated by primary coronary angioplasty or thrombolytic therapy for acute myocardial infarction. Eur Heart J. 2002;23(7):550–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kim LK, Feldman DN, Swaminathan RV, Minutello RM, Chanin J, Yang DC, Lee MK, Charitakis K, Shah A, Kaple RK, Bergman G, Singh H, Wong SC. Rate of percutaneous coronary intervention for the management of acute coronary syndromes and stable coronary artery disease in the United States (2007 to 2011). Am J Cardiol. 2014;114(7):1003–10.

    Article  PubMed  Google Scholar 

  36. Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54(4):281–92.

    Article  PubMed  Google Scholar 

  37. Uitterdijk A, Yetgin T, te Lintel Hekkert M, Sneep S, Krabbendam-Peters I, van Beusekom HM, Fischer TM, Cornelussen RN, Manintveld OC, Merkus D, Duncker DJ. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic Res Cardiol. 2015;110(5):508.

    Article  PubMed  Google Scholar 

  38. Kloner RA, King KS, Harrington MG. No-reflow phenomenon in the heart and brain. Am J Physiol Heart Circ Physiol. 2018;315(3):H550–62.

    Article  CAS  PubMed  Google Scholar 

  39. Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation. 2008;117(24):3152–6.

    Article  PubMed  Google Scholar 

  40. Heusch G. The coronary circulation as a target of cardioprotection. Circ Res. 2016;118(10):1643–58.

    Article  CAS  PubMed  Google Scholar 

  41. Quillen JE, Sellke FW, Brooks LA, Harrison DG. Ischemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries. Circulation. 1990;82(2):586–94.

    Article  CAS  PubMed  Google Scholar 

  42. Piana RN, Shafique T, Dai HB, Sellke FW. Epicardial and endocardial coronary microvascular responses: effects of ischemia-reperfusion. J Cardiovasc Pharmacol. 1994;23(4):539–46.

    Article  CAS  PubMed  Google Scholar 

  43. Skovsted GF, Kruse LS, Berchtold LA, Grell AS, Warfvinge K, Edvinsson L. Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat. PLoS One. 2017;12(3):e0174119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lieder HR, Baars T, Kahlert P, Kleinbongard P. Aspirate from human stented saphenous vein grafts induces epicardial coronary vasoconstriction and impairs perfusion and left ventricular function in rat bioassay hearts with pharmacologically induced endothelial dysfunction. Physiol Rep. 2016;4(15):e12874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY, Li CJ. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650–67.

    Article  CAS  PubMed  Google Scholar 

  46. de Waard GA, Hollander MR, Teunissen PF, Jansen MF, Eerenberg ES, Beek AM, Marques KM, van de Ven PM, Garrelds IM, Danser AH, Duncker DJ, van Royen N. Changes in coronary blood flow after acute myocardial infarction: insights From a patient study and an experimental porcine model. JACC Cardiovasc Interv. 2016;9(6):602–13.

    Article  PubMed  Google Scholar 

  47. van Veldhuisen DJ, van den Heuvel AF, Blanksma PK, Crijns HJ. Ischemia and left ventricular dysfunction: a reciprocal relation? J Cardiovasc Pharmacol. 1998;32(Suppl 1):S46–51.

    PubMed  Google Scholar 

  48. van den Heuvel AF, Bax JJ, Blanksma PK, Vaalburg W, Crijns HJ, van Veldhuisen DJ. Abnormalities in myocardial contractility, metabolism and perfusion reserve in non-stenotic coronary segments in heart failure patients. Cardiovasc Res. 2002;55(1):97–103.

    Article  PubMed  Google Scholar 

  49. Haitsma DB, Bac D, Raja N, Boomsma F, Verdouw PD, Duncker DJ. Minimal impairment of myocardial blood flow responses to exercise in the remodeled left ventricle early after myocardial infarction, despite significant hemodynamic and neurohumoral alterations. Cardiovasc Res. 2001;52:471–28.

    Article  Google Scholar 

  50. Merkus D, Houweling B, van den Meiracker AH, Boomsma F, Duncker DJ. Contribution of endothelin to coronary vasomotor tone is abolished after myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;288(2):H871–80.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao H, Chen H, Li H, Li D, Wang S, Han Y. Remodeling of small intramyocardial coronary arteries distal to total occlusions after myocardial infarction in pigs. Coron Artery Dis. 2013;24(6):493–500.

    Article  PubMed  Google Scholar 

  52. Zhang J, Wilke N, Wang Y, Zhang Y, Wang C, Eijgelshoven MH, Cho YK, Murakami Y, Ugurbil K, Bache RJ, From AH. Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model. MRI and 31 P-MRS study. Circulation. 1996;94(5):1089–100.

    Article  CAS  PubMed  Google Scholar 

  53. Helmer GA, McKirnan MD, Shabetai R, Boss GR, Ross JJ, Hammond HK. Regional deficits of myocardial blood flow and function in left ventricular pacing-induced heart failure. Circulation. 1996;94(9):2260–7.

    Article  CAS  PubMed  Google Scholar 

  54. van der Velden J, Merkus D, de Beer V, Hamdani N, Linke WA, Boontje NM, Stienen GJ, Duncker DJ. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodeled myocardium of pigs with a recent myocardial infarction. Front Physiol. 2011;2:83.

    PubMed  PubMed Central  Google Scholar 

  55. Duncker DJ, de Beer VJ, Merkus D. Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction. Med Biol Eng Comput. 2008;46(5):485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Berges A, Van Nassauw L, Timmermans JP, Vrints C. Role of nitric oxide during coronary endothelial dysfunction after myocardial infarction. Eur J Pharmacol. 2005;516(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  57. Taverne YJ, de Beer VJ, Hoogteijling BA, Juni RP, Moens AL, Duncker DJ, Merkus D. Nitroso-redox balance in control of coronary vasomotor tone. J Appl Physiol. 2012;112(10):1644–52.

    Article  CAS  PubMed  Google Scholar 

  58. Boontje NM, Merkus D, Zaremba R, Versteilen A, de Waard MC, Mearini G, de Beer VJ, Carrier L, Walker LA, Niessen HW, Dobrev D, Stienen GJ, Duncker DJ, van der Velden J. Enhanced myofilament responsiveness upon beta-adrenergic stimulation in post-infarct remodeled myocardium. J Mol Cell Cardiol. 2011;50(3):487–99.

    Article  CAS  PubMed  Google Scholar 

  59. Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  60. de Beer VJ, Taverne YJ, Kuster DW, Najafi A, Duncker DJ, Merkus D. Prostanoids suppress the coronary vasoconstrictor influence of endothelin after myocardial infarction. Am J Physiol Heart Circ Physiol. 2011;301(3):H1080–9.

    Article  PubMed  CAS  Google Scholar 

  61. Merkus D, Visser M, Houweling B, Zhou Z, Nelson J, Duncker DJ. Phosphodiesterase 5 inhibition-induced coronary vasodilation is reduced after myocardial infarction. Am J Physiol Heart Circ Physiol. 2013;304(10):H1370–81.

    Article  CAS  PubMed  Google Scholar 

  62. Haitsma DB, Merkus D, Vermeulen J, Verdouw PD, Duncker DJ. Nitric oxide production is maintained in exercising swine with chronic left ventricular dysfunction. Am J Physiol Heart Circ Physiol. 2002;282(6):H2198–209.

    Article  CAS  PubMed  Google Scholar 

  63. Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, Colucci WS, Sutton MG, Selwyn AP, Alexander RW, et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation. 1990;81(3):772–9.

    Article  CAS  PubMed  Google Scholar 

  64. Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res. 1998;83(10):969–79.

    Article  CAS  PubMed  Google Scholar 

  65. Halcox JP, Nour KR, Zalos G, Mincemoyer RA, Waclawiw M, Rivera CE, Willie G, Ellahham S, Quyyumi AA. The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J Am Coll Cardiol. 2002;40(7):1232–40.

    Article  CAS  PubMed  Google Scholar 

  66. Merkus D, Sorop O, Houweling B, Boomsma F, van den Meiracker AH, Duncker DJ. NO and prostanoids blunt endothelin-mediated coronary vasoconstrictor influence in exercising swine. Am J Physiol Heart Circ Physiol. 2006;291(5):H2075–81.

    Article  CAS  PubMed  Google Scholar 

  67. Kelly LK, Wedgwood S, Steinhorn RH, Black SM. Nitric oxide decreases endothelin-1 secretion through the activation of soluble guanylate cyclase. Am J Physiol Lung Cell Mol Physiol. 2004;286(5):L984–91.

    Article  CAS  PubMed  Google Scholar 

  68. Wiley KE, Davenport AP. Nitric oxide-mediated modulation of the endothelin-1 signalling pathway in the human cardiovascular system. Br J Pharmacol. 2001;132(1):213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zidar N, Dolenc-Strazar Z, Jeruc J, Jerse M, Balazic J, Gartner U, Jermol U, Zupanc T, Stajer D. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the normal human heart and in myocardial infarction. Cardiovasc Pathol. 2007;16(5):300–4.

    Article  CAS  PubMed  Google Scholar 

  70. Prins B, Hu R, Nazario B, Pedram A, Frank H, Weber M, Levin E. Prostaglandin E2 and prostacyclin inhibit the production and secretion of endothelin from cultured endothelial cells. J Biol Chem. 1994;269(16):11938–44.

    CAS  PubMed  Google Scholar 

  71. Sherling DH, Perumareddi P, Hennekens CH. Metabolic syndrome. J Cardiovasc Pharmacol Ther. 2017;22(4):365–7.

    Article  CAS  PubMed  Google Scholar 

  72. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19):1973–4.

    Article  CAS  PubMed  Google Scholar 

  73. Miller JM, Kaylor MB, Johannsson M, Bay C, Churilla JR. Prevalence of metabolic syndrome and individual criterion in US adolescents: 2001-2010 National Health and Nutrition Examination Survey. Metab Syndr Relat Disord. 2014;12(10):527–32.

    Article  PubMed  Google Scholar 

  74. Badimon L, Bugiardini R, Cenko E, Cubedo J, Dorobantu M, Duncker DJ, Estruch R, Milicic D, Tousoulis D, Vasiljevic Z, Vilahur G, de Wit C, Koller A. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J. 2017;38(25):1951–8.

    Article  CAS  PubMed  Google Scholar 

  75. Berwick ZC, Dick GM, Tune JD. Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol. 2012;52(4):848–56.

    Article  CAS  PubMed  Google Scholar 

  76. Van De Wouw J, Sorop O, Van Drie RWA, Joles JA, Merkus D, Duncker DJ. P6555 alterations in myocardial oxygen balance in exercising swine with multiple comorbiditiese. Eur Heart J. 2018;39(suppl_1):ehy566-P6555.

    Google Scholar 

  77. Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS, Beussink-Nelson L, Fermer ML, Broberg MA, Gan LM, Lund LH. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92.

    Article  PubMed  Google Scholar 

  79. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.

    Article  PubMed  Google Scholar 

  80. Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, van Heerebeek L, Hillege HL, Lam CS, Navis G, Voors AA. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail. 2016;18(6):588–98.

    Article  PubMed  Google Scholar 

  81. Pirat B, Bozbas H, Simsek V, Yildirir A, Sade LE, Gursoy Y, Altin C, Atar I, Muderrisoglu H. Impaired coronary flow reserve in patients with metabolic syndrome. Atherosclerosis. 2008;201(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  82. Zorach B, Shaw PW, Bourque J, Kuruvilla S, Balfour PC Jr, Yang Y, Mathew R, Pan J, Gonzalez JA, Taylor AM, Meyer CH, Epstein FH, Kramer CM, Salerno M. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson. 2018;20(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Setty S, Sun W, Tune JD. Coronary blood flow regulation in the prediabetic metabolic syndrome. Basic Res Cardiol. 2003;98(6):416–23.

    Article  PubMed  Google Scholar 

  84. Bender SB, de Beer VJ, Tharp DL, Bowles DK, Laughlin MH, Merkus D, Duncker DJ. Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise. Basic Res Cardiol. 2016;111(6):61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, Sayre J, Dahlbom M, Licinio J, Schelbert HR. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47(6):1188–95.

    Article  CAS  PubMed  Google Scholar 

  86. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41(8):1387–93.

    Article  PubMed  CAS  Google Scholar 

  87. van den Heuvel M, Sorop O, Koopmans SJ, Dekker R, de Vries R, van Beusekom HM, Eringa EC, Duncker DJ, Danser AH, van der Giessen WJ. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am J Physiol Heart Circ Physiol. 2012;302(1):H85–94.

    Article  PubMed  CAS  Google Scholar 

  88. Sorop O, van den Heuvel M, van Ditzhuijzen NS, de Beer VJ, Heinonen I, van Duin RW, Zhou Z, Koopmans SJ, Merkus D, van der Giessen WJ, Danser AH, Duncker DJ. Coronary microvascular dysfunction after long-term diabetes and hypercholesterolemia. Am J Physiol Heart Circ Physiol. 2016;311(6):H1339–51.

    Article  PubMed  Google Scholar 

  89. Barton M, Baretella O, Meyer MR. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br J Pharmacol. 2012;165(3):591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Berwick ZC, Dick GM, O’Leary HA, Bender SB, Goodwill AG, Moberly SP, Owen MK, Miller SJ, Obukhov AG, Tune JD. Contribution of electromechanical coupling between Kv and Ca v1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol. 2013;108(5):370.

    Article  PubMed  Google Scholar 

  91. Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN, Octavia Y, van Duin RWB, Stam K, van Geuns RJ, Wielopolski PA, Krestin GP, van den Meiracker AH, Verjans R, van Bilsen M, Danser AHJ, Paulus WJ, Cheng C, Linke WA, Joles JA, Verhaar MC, van der Velden J, Merkus D, Duncker DJ. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res. 2018;114(7):954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bagi Z, Feher A, Cassuto J. Microvascular responsiveness in obesity: implications for therapeutic intervention. Br J Pharmacol. 2012;165(3):544–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grassi G, Seravalle G, Quarti-Trevano F, Scopelliti F, Dell’Oro R, Bolla G, Mancia G. Excessive sympathetic activation in heart failure with obesity and metabolic syndrome: characteristics and mechanisms. Hypertension. 2007;49(3):535–41.

    Article  CAS  PubMed  Google Scholar 

  94. Kachur S, Morera R, De Schutter A, Lavie CJ. Cardiovascular risk in patients with prehypertension and the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):15.

    Article  PubMed  CAS  Google Scholar 

  95. Tok D, Cagli K, Kadife I, Turak O, Ozcan F, Basar FN, Golbasi Z, Aydogdu S. Impaired coronary flow reserve is associated with increased echocardiographic epicardial fat thickness in metabolic syndrome patients. Coron Artery Dis. 2013;24(3):191–5.

    Article  PubMed  Google Scholar 

  96. Bagi Z, Feher A, Cassuto J, Akula K, Labinskyy N, Kaley G, Koller A. Increased availability of angiotensin AT 1 receptors leads to sustained arterial constriction to angiotensin II in diabetes - role for Rho-kinase activation. Br J Pharmacol. 2011;163(5):1059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Noblet JN, Goodwill AG, Sassoon DJ, Kiel AM, Tune JD. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway. Basic Res Cardiol. 2016;111(3):25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003;108(12):1527–32.

    Article  PubMed  Google Scholar 

  99. Li ZL, Woollard JR, Ebrahimi B, Crane JA, Jordan KL, Lerman A, Wang SM, Lerman LO. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler Thromb Vasc Biol. 2012;32(5):1132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Trask AJ, Katz PS, Kelly AP, Galantowicz ML, Cismowski MJ, West TA, Neeb ZP, Berwick ZC, Goodwill AG, Alloosh M, Tune JD, Sturek M, Lucchesi PA. Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. J Appl Physiol. 2012;113(7):1128–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk J. Duncker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorop, O., van de Wouw, J., Merkus, D., Duncker, D.J. (2020). Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models. In: Dorobantu, M., Badimon, L. (eds) Microcirculation. Springer, Cham. https://doi.org/10.1007/978-3-030-28199-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28199-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28198-4

  • Online ISBN: 978-3-030-28199-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics