Skip to main content
Log in

Ultrasound Technologies for Biomaterials Fabrication and Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ultrasound is emerging as a powerful tool for developing biomaterials for regenerative medicine. Ultrasound technologies are finding wide-ranging, innovative applications for controlling the fabrication of bioengineered scaffolds, as well as for imaging and quantitatively monitoring the properties of engineered constructs both during fabrication processes and post-implantation. This review provides an overview of the biomedical applications of ultrasound for imaging and therapy, a tutorial of the physical mechanisms through which ultrasound can interact with biomaterials, and examples of how ultrasound technologies are being developed and applied for biomaterials fabrication processes, non-invasive imaging, and quantitative characterization of bioengineered scaffolds in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Agrawal, C. M., M. E. Kennedy, and D. M. Micallef. The effects of ultrasound irradiation on a biodegradable 50–50% copolymer of polylactic and polyglycolic acids. J. Biomed. Mater. Res. 28:851–859, 1994.

    CAS  PubMed  Google Scholar 

  2. Bae, H., A. S. Puranik, R. Gauvin, F. Edalat, B. Carrillo-Conde, N. A. Peppas, and A. Khademhosseini. Building vascular networks. Sci Transl. Med. 4:160ps123, 2012.

    Google Scholar 

  3. Bang, J. H., and K. S. Suslick. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22:1039–1059, 2010.

    CAS  PubMed  Google Scholar 

  4. Bazou, D., W. T. Coakley, A. J. Hayes, and S. K. Jackson. Long-term viability and proliferation of alginate-encapsulated 3-D HepG2 aggregates formed in an ultrasound trap. Toxicol. In Vitro 22:1321–1331, 2008.

    CAS  PubMed  Google Scholar 

  5. Bazou, D., G. A. Foster, J. R. Ralphs, and W. T. Coakley. Molecular adhesion development in a neural cell monolayer forming in an ultrasound trap. Mol. Membr. Biol. 22:229–240, 2005.

    CAS  PubMed  Google Scholar 

  6. Berco, J., M. Tanter, and M. Fink. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferr. 51:1449–1464, 2004.

    Google Scholar 

  7. Bouakaz, A., and N. de Jong. WFUMB Safety Symposium on Echo-Contrast Agents: nature and types of ultrasound contrast agents. Ultrasound Med. Biol. 33:187–196, 2007.

    PubMed  Google Scholar 

  8. Cai, X., B. S. Paratala, S. Hu, B. Sitharaman, and L. V. Wang. Multiscale photoacoustic microscopy of single-walled carbon nanotube-incorporated tissue engineering scaffolds. Tissue Eng. Part C 18:310–317, 2012.

    CAS  Google Scholar 

  9. Cai, X., Y. Zhang, L. Li, S. W. Choi, M. R. MacEwan, J. Yao, C. Kim, Y. Xia, and L. V. Wang. Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng. Part C 19:196–204, 2013.

    CAS  Google Scholar 

  10. Carstensen, E. L., K. J. Parker, and R. M. Lerner. Elastography in the management of liver disease. Ultrasound Med. Biol. 34:1535–1546, 2008.

    PubMed  Google Scholar 

  11. Caskey, C. F., X. Hu, and K. W. Ferrara. Leveraging the power of ultrasound for therapeutic design and optimization. J. Control Release. 156:297–306, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Chen, S., M. Fatemi, and J. F. Greenleaf. Shear property characterization of viscoelastic media using vibrations induced by ultrasound radiation force. In: Proc. IEEE Ultrasonics Symp., pp. 1871–1875, 2002.

  13. Chung, E., S. Y. Nam, L. M. Ricles, S. Y. Emelianov, and L. J. Suggs. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int. J. Nanomed. 8:325–336, 2013.

    Google Scholar 

  14. Coakley, W. T., J. J. Hawkes, M. A. Sobanski, C. M. Cousins, and J. Spengler. Analytical scale ultrasonic standing wave manipulation of cells and microparticles. Ultrasonics 38:638–641, 2000.

    CAS  PubMed  Google Scholar 

  15. Cochran, M., and M. A. Wheatley. In vitro gene delivery with ultrasound-triggered polymer microbubbles. Ultrasound Med. Biol. 39:1102–1119, 2013.

    PubMed Central  PubMed  Google Scholar 

  16. Cohn, N. A., S. Y. Emelianov, M. A. Lubinski, and M. ODonnell. An elasticity microscope. 1. Methods. IEEE Trans. Ultrason. Ferr. 44:1304–1319, 1997.

    Google Scholar 

  17. Cohn, N. A., B. S. Kim, R. Q. Erkamp, D. J. Mooney, S. Y. Emelianov, A. R. Skovoroda, and M. O’Donnell. High-resolution elasticity imaging for tissue engineering. IEEE Trans. Ultrason. Ferr. 47:956–966, 2000.

    Google Scholar 

  18. Crum, L. A., and R. A. Roy. Sonoluminescence. Science 266:233–234, 1994.

    CAS  PubMed  Google Scholar 

  19. Czarnota, G. J., M. C. Kolios, H. Vaziri, S. Benchimol, F. P. Ottensmeyer, M. D. Sherar, and J. W. Hunt. Ultrasonic biomicroscopy of viable, dead and apoptotic cells. Ultrasound Med. Biol. 23:961–965, 1997.

    CAS  PubMed  Google Scholar 

  20. Dalecki, D. Mechanical bioeffects of ultrasound. Annu. Rev. Biomed. Eng. 6:229–248, 2004.

    CAS  PubMed  Google Scholar 

  21. Dalecki, D. WFUMB Safety Symposium on Echo-Contrast Agents: bioeffects of ultrasound contrast agents in vivo. Ultrasound Med. Biol. 33:205–213, 2007.

    PubMed  Google Scholar 

  22. Dayton, P. A., J. S. Allen, and K. W. Ferrara. The magnitude of radiation force on ultrasound contrast agents. J. Acoust. Soc. Am. 112:2183–2192, 2002.

    CAS  PubMed  Google Scholar 

  23. Dayton, P., A. Klibanov, G. Brandenburger, and K. Ferrara. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med. Biol. 25:1195–1201, 1999.

    CAS  PubMed  Google Scholar 

  24. Deng, C. X., F. Sieling, H. Pan, and J. Cui. Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol. 30:519–526, 2004.

    PubMed  Google Scholar 

  25. Dhas, N. A., and K. S. Suslick. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc. 127:2368–2369, 2005.

    CAS  PubMed  Google Scholar 

  26. Dromi, S., V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. Li, and B. J. Wood. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res. 13:2722–2727, 2007.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Dutta, D., K. W. Lee, R. A. Allen, Y. Wang, J. C. Brigham, and K. Kim. Non-invasive assessment of elastic modulus of arterial constructs during cell culture using ultrasound elasticity imaging. Ultrasound Med. Biol. 39:2103–2115, 2013.

    PubMed Central  PubMed  Google Scholar 

  28. Dyson, M., J. B. Pond, B. Woodward, and J. Broadbent. The production of blood cell stasis and endothelial damage in the blood vessels of chick embryos treated with ultrasound in a stationary wave field. Ultrasound Med. Biol. 1:133–148, 1974.

    CAS  PubMed  Google Scholar 

  29. Emelianov, S. Y., P. C. Li, and M. O’Donnell. Photoacoustics for molecular imaging and therapy. Phys. Today 62:34–39, 2009.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Faez, T., M. Emmer, K. Kooiman, M. Versluis, A. F. W. van der Steen, and N. de Jong. 20 years of ultrasound contrast agent modeling. IEEE Trans. Ultrason. Ferr. 60:7–20, 2013.

    Google Scholar 

  31. Fan, Z., D. Chen, and C. X. Deng. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles. J. Control Release. 170:401–413, 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Fang, Y., J. P. Frampton, S. Raghavan, R. Sabahi-Kaviani, G. Luker, C. X. Deng, and S. Takayama. Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng. Part C 18:647–657, 2012.

    CAS  Google Scholar 

  33. Fatemi, M., and J. F. Greenleaf. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys. Med. Biol. 45:1449–1464, 2000.

    CAS  PubMed  Google Scholar 

  34. Ferrara, K., R. Pollard, and M. Borden. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9:415–447, 2007.

    CAS  PubMed  Google Scholar 

  35. Fite, B. Z., M. Decaris, Y. Sun, A. Lam, C. K. Ho, J. K. Leach, and L. Marcu. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng. Part C 17:495–504, 2011.

    CAS  Google Scholar 

  36. Flynn, H. G. Generation of transient cavities in liquids by microsecond pulses of ultrasound. J. Acoust. Soc. Am. 72:1926–1932, 1982.

    Google Scholar 

  37. Garvin, K. A., D. Dalecki, and D. C. Hocking. Vascularization of three-dimensional collagen hydrogels using ultrasound standing wave fields. Ultrasound Med. Biol. 37:1853–1864, 2011.

    PubMed Central  PubMed  Google Scholar 

  38. Garvin, K. A., D. Dalecki, M. Yousefhussien, M. Helguera, and D. C. Hocking. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields. J. Acoust. Soc. Am. 134:1483–1490, 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Garvin, K. A., D. C. Hocking, and D. Dalecki. Controlling the spatial organization of cells and extracellular matrix proteins in engineered tissues using ultrasound standing wave fields. Ultrasound Med. Biol. 36:1919–1932, 2010.

    PubMed Central  PubMed  Google Scholar 

  40. Garvin, K. A., J. VanderBurgh, D. C. Hocking, and D. Dalecki. Controlling collagen fiber microstructure in three-dimensional hydrogels using ultrasound. J. Acoust. Soc. Am. 134:1491–1502, 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Gedanken, A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11:47–55, 2004.

    CAS  PubMed  Google Scholar 

  42. Gessner, R., and P. A. Dayton. Advances in molecular imaging with ultrasound. Mol. Imaging 9:117–127, 2010.

    PubMed Central  PubMed  Google Scholar 

  43. Gessner, R. C., A. D. Hanson, S. Feingold, A. T. Cashion, A. Corcimaru, B. T. Wu, C. R. Mullins, S. R. Aylward, L. M. Reid, and P. A. Dayton. Functional ultrasound imaging for assessment of extracellular matrix scaffolds used for liver organoid formation. Biomaterials 34:9341–9351, 2013.

    CAS  PubMed  Google Scholar 

  44. Gherardini, L., C. M. Cousins, J. J. Hawkes, J. Spengler, S. Radel, H. Lawler, B. Devcic-Kuhar, M. Groschl, W. T. Coakley, and A. J. McLoughlin. A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves. Ultrasound Med. Biol. 31:261–272, 2005.

    PubMed  Google Scholar 

  45. Gherardini, L., S. Radel, S. Sielemann, O. Doblhoff-Dier, M. Groschl, E. Benes, and A. J. McLoughlin. A study of the spatial organisation of microbial cells in a gel matrix subjected to treatment with ultrasound standing waves. Bioseparation 10:153–162, 2002.

    Google Scholar 

  46. Gol’dberg, Z. Radiation forces acting on a particle in a sound field. In: High intensity ultrasonic fields, edited by L. Rozenberg. New York: Plenum Press, 1971, pp. 109–117.

    Google Scholar 

  47. Gor’kov, L. On the forces acting on a small particle in an acoustical filed in an ideal fluid. Sov. Phys. Dokl. 6:773–775, 1962.

    Google Scholar 

  48. Gould, R. K., and W. T. Coakley. The effects of acoustic forces on small particles in suspension. In: Finite amplitude wave effects in fluids: Proceedings of the 1973 Symposium, edited by L. Bjorno. Guildford: IPC Science and Technology Press LTD, 1974, pp. 252–257.

    Google Scholar 

  49. Gourevich, D., O. Dogadkin, A. Volovick, L. Wang, J. Gnaim, S. Cochran, and A. Melzer. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J. Control Release 170:316–324, 2013.

    CAS  PubMed  Google Scholar 

  50. Grull, H., and S. Langereis. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J. Control Release 161:317–327, 2012.

    PubMed  Google Scholar 

  51. Gudur, M., R. R. Rao, Y. S. Hsiao, A. W. Peterson, C. X. Deng, and J. P. Stegemann. Noninvasive, quantitative, spatiotemporal characterization of mineralization in three-dimensional collagen hydrogels using high-resolution spectral ultrasound imaging. Tissue Eng. Part C 18:935–946, 2012.

    CAS  Google Scholar 

  52. Gudur, M. S., R. R. Rao, A. W. Peterson, D. J. Caldwell, J. P. Stegemann, and C. X. Deng. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging. PLoS ONE 9:e85749, 2014.

    PubMed Central  PubMed  Google Scholar 

  53. Hensel, K., M. P. Mienkina, and G. Schmitz. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound Med. Biol. 37:2105–2115, 2011.

    PubMed  Google Scholar 

  54. Ingram, J. H., S. Korossis, G. Howling, J. Fisher, and E. Ingham. The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng. 13:1561–1572, 2007.

    CAS  PubMed  Google Scholar 

  55. Inkinen, S., J. Liukkonen, J. H. Ylarinne, P. H. Puhakka, M. J. Lammi, T. Viren, J. S. Jurvelin, and J. Toyras. Collagen and chondrocyte concentrations control ultrasound scattering in agarose scaffolds. Ultrasound Med. Biol. 40:2162–2171, 2014.

  56. Karshafian, R., P. D. Bevan, R. Williams, S. Samac, and P. N. Burns. Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med. Biol. 35:847–860, 2009.

    PubMed  Google Scholar 

  57. Kheirolomoom, A., C. Y. Lai, S. M. Tam, L. M. Mahakian, E. S. Ingham, K. D. Watson, and K. W. Ferrara. Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J. Control Release 172:266–273, 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Kim, K., C. G. Jeong, and S. J. Hollister. Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta Biomater. 4:783–790, 2008.

    PubMed Central  PubMed  Google Scholar 

  59. Kolios, M. C., G. J. Czarnota, M. Lee, J. W. Hunt, and M. D. Sherar. Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med. Biol. 28:589–597, 2002.

    CAS  PubMed  Google Scholar 

  60. Kreitz, S., G. Dohmen, S. Hasken, T. Schmitz-Rode, P. Mela, and S. Jockenhoevel. Nondestructive method to evaluate the collagen content of fibrin-based tissue engineered structures via ultrasound. Tissue Eng. Part C 17:1021–1026, 2011.

    CAS  Google Scholar 

  61. Kuznetsova, L. A., D. Bazou, G. O. Edwards, and W. T. Coakley. Multiple three-dimensional mammalian cell aggregates formed away from solid substrata in ultrasound standing waves. Biotechnol. Progr. 25:834–841, 2009.

    CAS  Google Scholar 

  62. Lee, J. B., S. I. Jeong, M. S. Bae, D. H. Yang, D. N. Heo, C. H. Kim, E. Alsberg, and I. K. Kwon. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng. Part A 17:2695–2702, 2011.

    CAS  PubMed  Google Scholar 

  63. Lerner, R. M., S. R. Huang, and K. J. Parker. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med. Biol. 16:231–239, 1990.

    CAS  PubMed  Google Scholar 

  64. Leskinen, J. J., and K. Hynynen. Study of factors affecting the magnitude and nature of ultrasound exposure with in vitro set-ups. Ultrasound Med. Biol. 38:777–794, 2012.

    PubMed  Google Scholar 

  65. Lindner, J. R., and S. Kaul. Delivery of drugs with ultrasound. Echocardiography 18:329–337, 2001.

    CAS  PubMed  Google Scholar 

  66. Liu, D., and E. S. Ebbini. Viscoelastic property measurement in thin tissue constructs using ultrasound. IEEE Trans. Ultrason. Ferr. 55:368–383, 2008.

    Google Scholar 

  67. Liu, J., L. A. Kuznetsova, G. O. Edwards, J. Xu, M. Ma, W. M. Purcell, S. K. Jackson, and W. T. Coakley. Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids. J. Cell. Biochem. 102:1180–1189, 2007.

    CAS  PubMed  Google Scholar 

  68. Lizzi, F. L., M. Astor, E. J. Feleppa, M. Shao, and A. Kalisz. Statistical framework for ultrasonic spectral parameter imaging. Ultrasound Med. Biol. 23:1371–1382, 1997.

    CAS  PubMed  Google Scholar 

  69. Lizzi, F. L., M. Astor, T. Liu, C. Deng, D. J. Coleman, and R. H. Silverman. Ultrasonic spectrum analysis for tissue assays and therapy evaluation. Int. J. Imag. Syst. Tech. 8:3–10, 1997.

    Google Scholar 

  70. Lizzi, F. L., M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman. Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J. Acoust. Soc. Am. 73:1366–1373, 1983.

    CAS  PubMed  Google Scholar 

  71. Lum, A. F., M. A. Borden, P. A. Dayton, D. E. Kruse, S. I. Simon, and K. W. Ferrara. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J. Control Release 111:128–134, 2006.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Mannaris, C., E. Efthymiou, M. E. Meyre, and M. A. Averkiou. In vitro localized release of thermosensitive liposomes with ultrasound-induced hyperthermia. Ultrasound Med. Biol. 39:2011–2020, 2013.

    PubMed  Google Scholar 

  73. Mazzoccoli, J. P., D. L. Feke, H. Baskaran, and P. N. Pintauro. Development of multilayered cell–hydrogel composites using an acoustic focusing technique. Biotechnol. Prog. 26:600–605, 2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. McAleavey, S., E. Collins, J. Kelly, E. Elegbe, and M. Menon. Validation of SMURF estimation of shear modulus in hydrogels. Ultrason. Imaging 31:131–150, 2009.

    PubMed Central  PubMed  Google Scholar 

  75. McAleavey, S. A., M. Menon, and J. Orszulak. Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force. Ultrason. Imaging 29:87–104, 2007.

    PubMed  Google Scholar 

  76. McDannold, N., N. Vykhodtseva, and K. Hynynen. Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study. Ultrasound Med. Biol. 33:584–590, 2007.

    PubMed Central  PubMed  Google Scholar 

  77. Mercado, K. P., M. Helguera, D. C. Hocking, and D. Dalecki. Estimating cell concentration in three-dimensional engineered tissues using high frequency quantitative ultrasound. Ann. Biomed. Eng. 42:1292–1304, 2014.

    PubMed  Google Scholar 

  78. Mercado, K. P., M. Helguera, D. C. Hocking, and D. Dalecki. Characterizing collagen microstructure using high-frequency ultrasound. J. Acoust. Soc. Am. 135:2373, 2014.

    Google Scholar 

  79. Miller, D. L. WFUMB Safety Symposium on Echo-Contrast Agents: in vitro bioeffects. Ultrasound Med. Biol. 33:197–204, 2007.

    PubMed  Google Scholar 

  80. Miller, D. L., and J. Quddus. Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc. Natl. Acad. Sci. USA 97:10179–10184, 2000.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Nam, S. Y., L. M. Ricles, L. J. Suggs, and S. Y. Emelianov. Imaging strategies for tissue engineering applications. Tissue Eng. Part B 2014. doi:10.1089/ten.teb.2014.0180

  82. NCRP. Exposure criteria for medical diagnostic ultrasound: II. Criteria based on all known mechanisms. Bethesda: National Council on Radiaton Protection and Measurement, 2002.

    Google Scholar 

  83. Nightingale, K. R., M. L. Palmeri, R. W. Nightingale, and G. E. Trahey. On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 110:625–634, 2001.

    CAS  PubMed  Google Scholar 

  84. Noble, M. L., P. D. Mourad, and B. D. Ratner. Digital drug delivery: On–off ultrasound controlled antibiotic release from coated matrices with negligible background leaching. Biomater. Sci. 2:839–902, 2014.

    PubMed  Google Scholar 

  85. Nyborg, W. Acoustic streaming due to attenuating plane waves. J. Acoust. Soc. Am. 25:68–75, 1953.

    Google Scholar 

  86. Nyborg, W. WFUMB Safety Symposium on Echo-Contrast Agents: mechanisms for the interaction of ultrasound. Ultrasound Med. Biol. 33:224–232, 2007.

    PubMed  Google Scholar 

  87. Oe, K., M. Miwa, K. Nagamune, Y. Sakai, S. Y. Lee, T. Niikura, T. Iwakura, T. Hasegawa, N. Shibanuma, Y. Hata, R. Kuroda, and M. Kurosaka. Nondestructive evaluation of cell numbers in bone marrow stromal cell/beta-tricalcium phosphate composites using ultrasound. Tissue Eng. Part C 16:347–353, 2010.

    CAS  Google Scholar 

  88. Ophir, J., I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13:111–134, 1991.

    CAS  PubMed  Google Scholar 

  89. Pan, H., Y. Zhou, O. Izadnegahdar, J. Cui, and C. X. Deng. Study of sonoporation dynamics affected by ultrasound duty cycle. Ultrasound Med. Biol. 31:849–856, 2005.

    PubMed  Google Scholar 

  90. Parker, K. J., M. M. Doyley, and D. J. Rubens. Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56:R1–R29, 2011.

    CAS  PubMed  Google Scholar 

  91. Qin, S., C. F. Caskey, and K. W. Ferrara. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys. Med. Biol. 54:R27–R57, 2009.

    PubMed Central  PubMed  Google Scholar 

  92. Rice, M. A., K. R. Waters, and K. S. Anseth. Ultrasound monitoring of cartilaginous matrix evolution in degradable PEG hydrogels. Acta Biomater. 5:152–161, 2009.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Rooney, J. A., and W. L. Nyborg. Acoustic radiation pressure in a travelling plane-wave. Am. J. Phys. 40:1825–1830, 1972.

    Google Scholar 

  94. Rychak, J. J., A. L. Klibanov, K. F. Ley, and J. A. Hossack. Enhanced targeting of ultrasound contrast agents using acoustic radiation force. Ultrasound Med. Biol. 33:1132–1139, 2007.

    PubMed  Google Scholar 

  95. Saito, M., T. Daian, K. Hayashi, and S. Izumida. Fabrication of a polymer composute with periodic structure by the use of ultrasonic waves. J. Appl. Phys. 83:3490–3494, 1998.

    CAS  Google Scholar 

  96. Solorio, L., B. M. Babin, R. B. Patel, J. Mach, N. Azar, and A. A. Exner. Noninvasive characterization of in situ forming implants using diagnostic ultrasound. J. Control Release 143:183–190, 2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Starritt, H. C., F. A. Duck, and V. F. Humphrey. An experimental investigation of streaming in pulsed diagnostic ultrasound beams. Ultrasound Med. Biol. 15:363–373, 1989.

    CAS  PubMed  Google Scholar 

  98. Sun, Y., D. Responte, H. Xie, J. Liu, H. Fatakdawala, J. Hu, K. A. Athanasiou, and L. Marcu. Nondestructive evaluation of tissue engineered articular cartilage using time-resolved fluorescence spectroscopy and ultrasound backscatter microscopy. Tissue Eng. Part C 18:215–226, 2012.

    CAS  Google Scholar 

  99. Suslick, K. S., and G. J. Price. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29:295–326, 1999.

    CAS  Google Scholar 

  100. Talukdar, Y., P. Avti, J. Sun, and B. Sitharaman. Multimodal ultrasound-photoacoustic imaging of tissue engineering scaffolds and blood oxygen saturation in and around the scaffolds. Tissue Eng. Part C 20:440–449, 2014.

    CAS  Google Scholar 

  101. ter Haar, G., A. Shaw, S. Pye, B. Ward, F. Bottomley, R. Nolan, and A. M. Coady. Guidance on reporting ultrasound exposure conditions for bio-effects studies. Ultrasound Med. Biol. 37:177–183, 2011.

    PubMed  Google Scholar 

  102. Tsutsui, J. M., F. Xie, and R. T. Porter. The use of microbubbles to target drug delivery. Cardiovasc. Ultrasound. 2:23, 2004.

    PubMed Central  PubMed  Google Scholar 

  103. Tunis, A. S., G. J. Czarnota, A. Giles, M. D. Sherar, J. W. Hunt, and M. C. Kolios. Monitoring structural changes in cells with high-frequency ultrasound signal statistics. Ultrasound Med. Biol. 31:1041–1049, 2005.

    CAS  PubMed  Google Scholar 

  104. Unger, E. C., T. Porter, W. Culp, R. Labell, T. Matsunaga, and R. Zutshi. Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev. 56:1291–1314, 2004.

    CAS  PubMed  Google Scholar 

  105. Varghese, T. Quasi-static ultrasound elastography. Ultrasound Clin. 4:323–338, 2009.

    PubMed Central  PubMed  Google Scholar 

  106. Vats, K., and D. S. Benoit. Dynamic manipulation of hydrogels to control cell behavior: a review. Tissue Eng. Part B 19:455–469, 2013.

    CAS  Google Scholar 

  107. Walker, J. M., A. M. Myers, M. D. Schluchter, V. M. Goldberg, A. I. Caplan, J. A. Berilla, J. M. Mansour, and J. F. Welter. Nondestructive evaluation of hydrogel mechanical properties using ultrasound. Ann. Biomed. Eng. 39:2521–2530, 2011.

    PubMed Central  PubMed  Google Scholar 

  108. Wang, X., W. Li, and V. Kumar. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 27:1924–1929, 2006.

    CAS  PubMed  Google Scholar 

  109. Watson, N. J., R. K. Johal, Z. Glover, Y. Reinwald, L. J. White, A. M. Ghaemmaghami, S. P. Morgan, F. R. Rose, M. J. Povey, and N. G. Parker. Post-processing of polymer foam tissue scaffolds with high power ultrasound: a route to increased pore interconnectivity, pore size and fluid transport. Mater. Sci. Eng. C 33:4825–4832, 2013.

    CAS  Google Scholar 

  110. Whittingham, T. A. Contrast-Specific Imaging Techniques: Technical Perspective. In: Contrast Media in Ultrasonography, edited by E. Quaia. Berlin: Springer, 2005, pp. 43–70.

    Google Scholar 

  111. Wiklund, M., C. Gunther, R. Lemor, M. Jager, G. Fuhr, and H. M. Hertz. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6:1537–1544, 2006.

    CAS  PubMed  Google Scholar 

  112. Wilson, C. G., F. M. Martin-Saavedra, F. Padilla, M. L. Fabiilli, M. Zhang, A. M. Baez, C. J. Bonkowski, O. D. Kripfgans, R. Voellmy, N. Vilaboa, J. B. Fowlkes and R. T. Franceschi. Patterning expression of regenerative growth factors using high intensity focused ultrasound. Tissue Eng. Part C 20:769–779, 2014.

  113. Winterroth, F., K. W. Hollman, S. Kuo, K. Izumi, S. E. Feinberg, S. J. Hollister, and J. B. Fowlkes. Comparison of scanning acoustic microscopy and histology images in characterizing surface irregularities among engineered human oral mucosal tissues. Ultrasound Med. Biol. 37:1734–1742, 2011.

    PubMed Central  PubMed  Google Scholar 

  114. Winterroth, F., J. Lee, S. Kuo, J. B. Fowlkes, S. E. Feinberg, S. J. Hollister, and K. W. Hollman. Acoustic microscopy analyses to determine good vs. failed tissue engineered oral mucosa under normal or thermally stressed culture conditions. Ann. Biomed. Eng. 39:44–52, 2011.

    PubMed Central  PubMed  Google Scholar 

  115. Xu, H., B. W. Zeiger, and K. S. Suslick. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42:2555–2567, 2013.

    CAS  PubMed  Google Scholar 

  116. Yu, J., K. Takanari, Y. Hong, K. W. Lee, N. J. Amoroso, Y. Wang, W. R. Wagner, and K. Kim. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging. Biomaterials 34:2701–2709, 2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Yudina, A., M. de Smet, M. Lepetit-Coiffe, S. Langereis, L. Van Ruijssevelt, P. Smirnov, V. Bouchaud, P. Voisin, H. Grull, and C. T. Moonen. Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. J. Control Release 155:442–448, 2011.

    CAS  PubMed  Google Scholar 

  118. Zhou, Y., K. Yang, J. Cui, J. Y. Ye, and C. X. Deng. Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control Release 157:103–111, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Stephen McAleavey, Eric Comeau, and Karla Mercado (University of Rochester) for providing images.

Conflict of interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise C. Hocking.

Additional information

Associate Editor Rosemarie Hunziker oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalecki, D., Hocking, D.C. Ultrasound Technologies for Biomaterials Fabrication and Imaging. Ann Biomed Eng 43, 747–761 (2015). https://doi.org/10.1007/s10439-014-1158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1158-6

Keywords

Navigation