Skip to main content
Log in

Limb-inspired bionic quasi-zero stiffness vibration isolator

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Vibration reduction has always been one of hot and important topics in mechanical engineering, especially for the special measurement instrument. In this paper, a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs, distinguishing from the existing tension spring structures in the literature. The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification. To evaluate the vibration isolation performance, typical three-springs quasi-zero stiffness (TS QZS) system is selected to compare with the proposed bionic structure. And the graphical processing unit (GPU) parallel technology is applied to perform necessary two-parameter analyses, providing more insights into the effects of parameters on the transmissibility. It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.

Graphic abstract

A novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs. To evaluate the vibration isolation performance, typical three-springs quasi-zero stiffness (TS QZS) system is selected to compare with the proposed bionic structure. It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Liu, J., Ou, H., Zeng, R., et al.: Fabrication, dynamic properties and multi-objective optimization of a metal origami tube with Miura sheets. Thin-Walled Struct. 144, 106352 (2019)

    Article  Google Scholar 

  2. Zhao, G., Liu, J., Wen, G., et al.: Stick-slip behavior of reversing the tubular woven bag covering a rigid tube-theoretical and numerical studies. Results Phys. 12, 1218–1227 (2019)

    Article  Google Scholar 

  3. Ma, J., Chen, G., Ji, L., et al.: A general methodology to establish the contact force model for complex contacting surfaces. Mech. Syst. Signal Proc. 140, 106678 (2020)

    Article  Google Scholar 

  4. Yin, S., Ji, J., Deng, S., et al.: Degenerate grazing bifurcations in a three-degree-of-freedom impact oscillator. Nonlinear Dyn. 97, 525–539 (2019)

    Article  MATH  Google Scholar 

  5. Wen, G., Xu, D.: Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems. Chaos Solitons Fractals. 26, 71–77 (2005)

    Article  MATH  Google Scholar 

  6. Omidi, E., Mahmoodi, S.N.: Nonlinear integral resonant controller for vibration reduction in nonlinear systems. Acta Mech. Sin. 32, 925–934 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, F., Xu, J.: Parameter design for a vibration absorber with time-delayed feedback control. Acta Mech. Sin. 35, 624–640 (2019)

    Article  MathSciNet  Google Scholar 

  8. Rivin, E.I.: Passive Vibration Isolation. ASME Press, New York (2001)

    Google Scholar 

  9. Ye, K., Ji, J., Brown, T.: Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 471, 115198 (2020)

    Article  Google Scholar 

  10. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  Google Scholar 

  11. Carrella, A., Brennan, M.J., Waters, T.P., et al.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012)

    Article  Google Scholar 

  12. Xu, J., Sun, X.: A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)

    Article  Google Scholar 

  13. Cao, Q., Wiercigroch, M., Pavlovskaia, E. E., et al.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 046218 (2006).

  14. Zhao, F., Ji, J., Ye, K., et al.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Proc. 144, 106975 (2020)

    Article  Google Scholar 

  15. Huang, X., Liu, X., Sun, J., et al.: Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76, 1157–1167 (2014)

    Article  MathSciNet  Google Scholar 

  16. Shaw, A.D., Neild, S.A., Wagg, D.J., et al.: A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332, 6265–6275 (2013)

    Article  Google Scholar 

  17. Zhou, N., Liu, K.: A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound Vib. 329, 1254–1273 (2010)

    Article  Google Scholar 

  18. Shan, Y., Wu, W., Chen, X.: Design of a Miniaturized Pneumatic Vibration Isolator With High-Static-Low-Dynamic Stiffness. J. Vib. Acoust. 137, 045001 (2015)

    Article  Google Scholar 

  19. Dong, G., Zhang, X., Xie, S., et al.: Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Proc. 86, 188–203 (2017)

    Article  Google Scholar 

  20. Zheng, Y., Zhang, X., Luo, Y., et al.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Proc. 100, 135–151 (2018)

    Article  Google Scholar 

  21. Zhou, J., Wang, X., Xu, D., et al.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  22. Ye, K., Ji, J., Brown, T.: A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations. Mech. Syst. Signal Proc. 149, 107340 (2021)

    Article  Google Scholar 

  23. Li, M., Cheng, W., Xie, R.: Design and experiments of a quasi-zero-stiffness isolator with a noncircular cam-based negative-stiffness mechanism. J. Vib. Control 0, 1–13 (2020).

  24. Meng, L., Sun, J., Wu, W.: Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element. Shock Vib. 2015, 1–19 (2015)

    Google Scholar 

  25. Sadeghi, S., Li, S.: Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation. Smart Mater. Struct. 28, 065006 (2019)

    Article  Google Scholar 

  26. Tuo, J., Deng, Z., Zhang, H., et al.: A 3-axis torsion quasi-zero-stiffness-based sensor system for angular vibration measurement. J. Vib. Control. 24, 4325–4336 (2017)

    Article  MathSciNet  Google Scholar 

  27. Zhou, J., Wang, K., Xu, D., et al.: Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator. J. Vib. Control. 24, 3278–3291 (2017)

    Article  Google Scholar 

  28. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)

    Article  Google Scholar 

  29. Ding, H., Ji, J., Chen, L.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Proc. 121, 675–688 (2019)

    Article  Google Scholar 

  30. Zhu, G., Liu, J., Cao, Q., et al.: A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. Sci. China-Technol. Sci. 63, 496–505 (2020)

    Article  Google Scholar 

  31. Wu, Z., Jing, X., Bian, J., et al.: Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspir Biomim. 10, 056015 (2015)

    Article  Google Scholar 

  32. Silva-Soares, T., Mônico, A. T.: Hind limb malformation in the tree frog Corythomantis greeningi (Anura: Hylidae). Phyllomedusa. 16 (2017).

  33. Bian. J., Jing. X.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Proc. 125, 21–51 (2019).

  34. Wang, Y., Jing, X., Guo, Y.: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints. Nonlinear Dyn. 95, 445–464 (2018)

    Article  Google Scholar 

  35. Meng, G., Peng, Z., Zhang, W., et al.: Multi-direction vibration isolator for momentum wheel assemblies. J. Vib. Acoust. 142, 1–19 (2020)

    Google Scholar 

  36. Yan, G., Wang, S., Zou, H., et al.: Bio-inspired polygonal skeleton structure for vibration isolation: design, modelling, and experiment. Sci. China Technol. Sci. 63, 1–14 (2020)

    Google Scholar 

  37. Yan, G., Zou, H., Wang, S., et al.: Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 478, 115344 (2020)

    Article  Google Scholar 

  38. Feng, X., Jing, X.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia. Mech. Syst. Signal Proc. 117, 786–812 (2019)

    Article  Google Scholar 

  39. Feng, X., Jing, X., Xu, Z., et al.: Bio-inspired anti-vibration with nonlinear inertia coupling. Mech. Syst. Signal Proc. 124, 562–595 (2019)

    Article  Google Scholar 

  40. Dai, H., Cao, X., Jing, X., et al.: Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment. Mech. Syst. Signal Proc. 142, 106785 (2020)

    Article  Google Scholar 

  41. Zhou, J., Xu, D., Bishop, S.: A torsion quasi-zero stiffness vibration isolator. J. Sound Vib. 338, 121–133 (2015)

    Article  Google Scholar 

  42. Hamdan, M.N., Burton, T.D.: On the steady state response and stability of non-linear oscillators using harmonic balance. J. Sound Vib. 166, 255–266 (1993)

    Article  MATH  Google Scholar 

  43. Yan, B., Ma, H., Jian, B., et al.: Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets. Nonlinear Dyn. 97, 2499–2519 (2019)

    Article  MATH  Google Scholar 

  44. Carrella, A., Brennan, M.J., Kovacic, I., et al.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322, 707–717 (2009)

    Article  Google Scholar 

  45. Lou, J., Zhu, S., He, L., et al.: Experimental chaos in nonlinear vibration isolation system. Chaos Solitons Fractals. 40, 1367–1375 (2009)

    Article  Google Scholar 

  46. Yin, S., Wen, G., Ji, J., et al.: Novel two-parameter dynamics of impact oscillators near degenerate grazing points. Int. J. Non-Linear Mech. 120, 103403 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11832009 and 11672104), and the Chair Professor of Lotus Scholars Program in Hunan province (Grants XJT2015408). Meanwhile, the authors are very grateful to the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilin Wen.

Additional information

Executive Editor: Jian Xu

Appendices

Appendix 1

The coefficients in Eqs. (2)-(4) can be expressed as

$$\alpha_{1} { = }\arccos (\frac{{a^{2} + b^{2} - h^{2} }}{2ab}),\;\;\;\;\beta_{1} = \arccos (\frac{{h^{2} + b^{2} - a^{2} }}{2bh}),$$
$$\alpha_{2} (\Delta x) = \arccos \left[ {\frac{{a^{2} + b^{2} - (h - \Delta x)^{2} }}{2ab}} \right],\;\sin \left[ {\varphi (x + \Delta x)} \right] = \frac{{\left[ {h - (x + \Delta x)} \right]^{2} - b^{2} + a^{2} }}{{2a\left[ {h - (x + \Delta x)} \right]}},$$
$$\alpha_{2} (x + \Delta x) = \arccos \left\{ {\frac{{a^{2} + b^{2} - \left[ {h - (x + \Delta x)} \right]^{2} }}{2ab}} \right\}.$$

Appendix 2

The coefficients in Eq. (5) can be expressed as

$$\lambda_{1} = \overline{h} - \Delta \overline{x},\;\;\;\;\eta_{1} = \frac{{(2\sqrt 2 \lambda_{1} )^{2} }}{{\lambda_{2} \overline{\alpha }_{1} }},$$
$$\lambda_{2} = 4\overline{b}^{2} - (1 + \overline{b}^{2} - \lambda_{1}^{2} )^{2} ,\;\;\;\;\eta_{2} = \frac{{8\lambda_{1}^{2} \lambda_{3} \left[ {\overline{\alpha }_{2} (\Delta \overline{x}) - \overline{\alpha }_{1} } \right]}}{{\overline{\alpha }_{1} \lambda_{2}^{3/2} }},$$
$$\lambda_{3} { = }\overline{b}^{2} { + }1 - \lambda_{1}^{2} ,\;\;\;\;\eta_{3} = \frac{{4\left[ {\overline{\alpha }_{2} (\Delta \overline{x}) - \overline{\alpha }_{1} } \right]}}{{\overline{\alpha }_{1} \sqrt {\lambda_{2} } }},$$
$$\lambda_{4} { = }\overline{b}^{2} - 1 + \lambda_{1}^{2} ,\;\;\;\;\eta_{4} = \frac{{4\lambda_{7} }}{{\sqrt {\lambda_{2} } }},$$
$$\lambda_{5} { = }1{ + }\lambda_{1}^{2} - \overline{b}^{2} ,\;\;\;\;\eta_{5} = \frac{{4\lambda_{1} \lambda_{5} (4\lambda_{1}^{2} - 2\lambda_{4} )}}{{ - 4\overline{\alpha }_{1} \lambda_{1}^{3} \sqrt {\lambda_{2} (4\lambda_{1}^{2} \overline{b}^{2} - \lambda_{4}^{2} )} }},$$
$$\lambda_{6} { = }1 - \lambda_{1}^{2} - \overline{b}^{2} ,\;\;\;\;\eta_{6} = \frac{{4\lambda_{7} \lambda_{6} }}{{\overline{\alpha }_{1} \lambda_{2}^{3/2} }},$$
$$\lambda_{7} = \overline{\beta }_{1} + \overline{\beta }_{2} (\Delta \overline{x}) - \uppi ,\;\eta_{7} = \frac{{2\lambda_{7} \lambda_{5} }}{{ - \overline{\alpha }_{1} \lambda_{1} \sqrt {\lambda_{2} } }},$$
$$\overline{h} = \frac{h}{a},\;\;\;\;\Delta \overline{x} = \overline{h} - \sqrt {\overline{b}^{2} - 1} + \frac{{\overline{b}}}{12},$$
$$\overline{b} = \frac{b}{a}.$$

Appendix 3

The coefficients in Eq. (9) can be expressed as

$$\dot{\alpha} (x + \Delta x) = \frac{{(x + \Delta x - h)\dot{x} }}{{ab\sqrt {1 - \left\{ {\left[ {a^{2} + b^{2} - (x + \Delta x - h)^{2} } \right]/2ab} \right\}^{2} } }},$$
$$\dot{\beta} (x + \Delta x) = \frac{{h - (x + \Delta x) - (b^{2} - a^{2} )/\left[ {h - (x + \Delta x)} \right]}}{{\sqrt {4b^{2} \left[ {h - (x + \Delta x)} \right]^{2} - \left\{ {b^{2} + \left[ {h - (x + \Delta x)} \right]^{2} - a^{2} } \right\}^{2} } }}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Wen, G., Zhou, J. et al. Limb-inspired bionic quasi-zero stiffness vibration isolator. Acta Mech. Sin. 37, 1152–1167 (2021). https://doi.org/10.1007/s10409-021-01070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01070-6

Keywords

Navigation